Sylvain Raffaele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3565170/publications.pdf

Version: 2024-02-01

		94433	144013
57	9,526	37	57
papers	citations	h-index	g-index
69	69	69	8633
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	27.8	1,405
2	Genome evolution in filamentous plant pathogens: why bigger can be better. Nature Reviews Microbiology, 2012, 10, 417-430.	28.6	735
3	The two-speed genomes of filamentous pathogens: waltz with plants. Current Opinion in Genetics and Development, 2015, 35, 57-65.	3.3	503
4	Genome Evolution Following Host Jumps in the Irish Potato Famine Pathogen Lineage. Science, 2010, 330, 1540-1543.	12.6	440
5	A Receptor Pair with an Integrated Decoy Converts Pathogen Disabling of Transcription Factors to Immunity. Cell, 2015, 161, 1074-1088.	28.9	401
6	Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 2010, 11, R73.	9.6	391
7	Understanding and Exploiting Late Blight Resistance in the Age of Effectors. Annual Review of Phytopathology, 2011, 49, 507-531.	7.8	369
8	Remorin, a Solanaceae Protein Resident in Membrane Rafts and Plasmodesmata, Impairs <i>Potato virus X</i> Movement. Plant Cell, 2009, 21, 1541-1555.	6.6	352
9	A MYB Transcription Factor Regulates Very-Long-Chain Fatty Acid Biosynthesis for Activation of the Hypersensitive Cell Death Response in <i>Arabidopsis</i> Arabidopsis	6.6	343
10	Genome Analyses of an Aggressive and Invasive Lineage of the Irish Potato Famine Pathogen. PLoS Pathogens, 2012, 8, e1002940.	4.7	321
11	The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Molecular Biology, 2008, 67, 547-566.	3.9	317
12	A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2343-2348.	7.1	316
13	Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen <i>Phytophthora capsici</i> Molecular Plant-Microbe Interactions, 2012, 25, 1350-1360.	2.6	264
14	Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics, 2014, 15, 336.	2.8	241
15	Using Hierarchical Clustering of Secreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi. PLoS ONE, 2012, 7, e29847.	2.5	235
16	Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics, 2010, 11, 637.	2.8	188
17	The Complete Genome Sequence of the Phytopathogenic Fungus Sclerotinia sclerotiorum Reveals Insights into the Genome Architecture of Broad Host Range Pathogens. Genome Biology and Evolution, 2017, 9, 593-618.	2.5	187
18	Ten things to know about oomycete effectors. Molecular Plant Pathology, 2009, 10, 795-803.	4.2	185

#	Article	IF	CITATIONS
19	Cuticle Structure in Relation to Chemical Composition: Re-assessing the Prevailing Model. Frontiers in Plant Science, 2016, 7, 427.	3.6	185
20	Genome-Wide Annotation of Remorins, a Plant-Specific Protein Family: Evolutionary and Functional Perspectives. Plant Physiology, 2007, 145, 593-600.	4.8	164
21	Resistance to phytopathogens <i>e tutti quanti</i> : placing plant quantitative disease resistance on the map. Molecular Plant Pathology, 2014, 15, 427-432.	4.2	135
22	Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. ELife, 2017, 6, .	6.0	135
23	An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Letters, 2006, 580, 3498-3504.	2.8	134
24	Plasma Membrane Localization of <i>Solanum tuberosum</i> Remorin from Group 1, Homolog 3 Is Mediated by Conformational Changes in a Novel C-Terminal Anchor and Required for the Restriction of Potato Virus X Movement Â. Plant Physiology, 2012, 160, 624-637.	4.8	132
25	The Plant Membrane-Associated REMORIN1.3 Accumulates in Discrete Perihaustorial Domains and Enhances Susceptibility to <i>Phytophthora infestans</i>)i>ÂÂ. Plant Physiology, 2014, 165, 1005-1018.	4.8	116
26	Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010, 12, 705-715.	2.1	108
27	Emerging Trends in Molecular Interactions between Plants and the Broad Host Range Fungal Pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Frontiers in Plant Science, 2016, 7, 422.	3.6	105
28	Very long chain fatty acid and lipid signaling in the response of plants to pathogens. Plant Signaling and Behavior, 2009, 4, 94-99.	2.4	98
29	Advances on plant–pathogen interactions from molecular toward systems biology perspectives. Plant Journal, 2017, 90, 720-737.	5.7	81
30	Small RNAs from the plant pathogenic fungus <i>Sclerotinia sclerotiorum</i> highlight host candidate genes associated with quantitative disease resistance. Molecular Plant Pathology, 2019, 20, 1279-1297.	4.2	78
31	The genetics underlying natural variation of plant–plant interactions, a beloved but forgotten member of the family of biotic interactions. Plant Journal, 2018, 93, 747-770.	5.7	65
32	From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genome Biology, 2013, 14, 211.	8.8	64
33	Intercellular cooperation in a fungal plant pathogen facilitates host colonization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3193-3201.	7.1	52
34	Searching algorithm for type IV secretion system effectors 1.0: a tool for predicting type IV effectors and exploring their genomic context. Nucleic Acids Research, 2013, 41, 9218-9229.	14.5	50
35	Comparative Genomic Analysis of Drechmeria coniospora Reveals Core and Specific Genetic Requirements for Fungal Endoparasitism of Nematodes. PLoS Genetics, 2016, 12, e1006017.	3.5	45
36	A Recent Expansion of the RXLR Effector Gene <i>Avrblb2</i> Is Maintained in Global Populations of <i>Phytophthora infestans</i> Indicating Different Contributions to Virulence. Molecular Plant-Microbe Interactions, 2015, 28, 901-912.	2.6	44

#	Article	IF	CITATIONS
37	Two-Dimensional Data Binning for the Analysis of Genome Architecture in Filamentous Plant Pathogens and Other Eukaryotes. Methods in Molecular Biology, 2014, 1127, 29-51.	0.9	44
38	Shifts in diversification rates and host jump frequencies shaped the diversity of host range among <i>Sclerotiniaceae</i> fungal plant pathogens. Molecular Ecology, 2018, 27, 1309-1323.	3.9	40
39	Regulate and be regulated: integration of defense and other signals by the AtMYB30 transcription factor. Frontiers in Plant Science, 2013, 4, 98.	3.6	38
40	Identification and phylogenetic analyses of VASt, an uncharacterized protein domain associated with lipid-binding domains in Eukaryotes. BMC Bioinformatics, 2014, 15, 222.	2.6	38
41	Parallel evolution of the POQR prolyl oligo peptidase gene conferring plant quantitative disease resistance. PLoS Genetics, 2017, 13, e1007143.	3.5	38
42	Codon optimization underpins generalist parasitism in fungi. ELife, 2017, 6, .	6.0	36
43	Rapid identification of an Arabidopsis NLR gene as a candidate conferring susceptibility to <i>Sclerotinia sclerotiorum</i> using timeâ€resolved automated phenotyping. Plant Journal, 2020, 103, 903-917.	5.7	31
44	Expression polymorphism at the <i><scp>ARPC</scp>4</i> locus links the actin cytoskeleton with quantitative disease resistance to <i>Sclerotinia sclerotiorum</i> in <i>Arabidopsis thaliana</i> New Phytologist, 2019, 222, 480-496.	7.3	30
45	Natural Variation in Seed Very Long Chain Fatty Acid Content Is Controlled by a New Isoform of KCS18 in Arabidopsis thaliana. PLoS ONE, 2012, 7, e49261.	2.5	28
46	Major Transcriptome Reprogramming Underlies Floral Mimicry Induced by the Rust Fungus Puccinia monoica in Boechera stricta. PLoS ONE, 2013, 8, e75293.	2.5	25
47	Genomeâ€wide alternative splicing profiling in the fungal plant pathogen <i>Sclerotinia sclerotiorum</i> during the colonization of diverse host families. Molecular Plant Pathology, 2021, 22, 31-47.	4.2	25
48	Up regulation of the plant protein remorin correlates with dehiscence and cell maturation; a link with the maturation of plasmodesmata?. Plant Signaling and Behavior, 2009, 4, 915-919.	2.4	23
49	A whole genome scan of SNP data suggests a lack of abundant hard selective sweeps in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. PLoS ONE, 2019, 14, e0214201.	2.5	23
50	Phylotranscriptomics of the Pentapetalae Reveals Frequent Regulatory Variation in Plant Local Responses to the Fungal Pathogen <i>Sclerotinia sclerotiorum</i> . Plant Cell, 2020, 32, 1820-1844.	6.6	21
51	Transcriptional response to host chemical cues underpins the expansion of host range in a fungal plant pathogen lineage. ISME Journal, 2022, 16, 138-148.	9.8	17
52	Common protein sequence signatures associate with Sclerotinia borealis lifestyle and secretion in fungal pathogens of the Sclerotiniaceae. Frontiers in Plant Science, 2015, 6, 776.	3.6	16
53	The Remorin C-terminal Anchor was shaped by convergent evolution among membrane binding domains. Plant Signaling and Behavior, 2013, 8, e23207.	2.4	12
54	Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiology Reviews, 2021, 45, .	8.6	12

#	Article	IF	CITATIONS
55	Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010, 12, 1015-1015.	2.1	11
56	Patterns of Sequence and Expression Diversification Associate Members of the PADRE Gene Family With Response to Fungal Pathogens. Frontiers in Genetics, 2020, 11, 491.	2.3	9
57	A Chromosome-Scale Genome Assembly Resource for <i>Myriosclerotinia sulcatula </i> Infecting Sedge Grass (<i>Carex</i> sp.). Molecular Plant-Microbe Interactions, 2020, 33, 880-883.	2.6	2