Qiang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3565116/publications.pdf

Version: 2024-02-01

280 papers 16,688 citations

62 h-index 123 g-index

285 all docs

285 docs citations

times ranked

285

6753 citing authors

#	Article	IF	CITATIONS
1	Orthogonally Dual-Polarized Leaky-Wave Antenna for Endfire Radiation Based on Periodical Loading. IEEE Transactions on Antennas and Propagation, 2022, 70, 835-845.	3.1	5
2	Dual-Polarized RIS-Assisted Mobile Communications. IEEE Transactions on Wireless Communications, 2022, 21, 591-606.	6.1	17
3	Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface. National Science Review, 2022, 9, nwab134.	4.6	46
4	Joint Modulations of Electromagnetic Waves and Digital Signals on a Single Metasurface Platform to Reach Programmable Wireless Communications. Engineering, 2022, 8, 86-95.	3.2	11
5	An Angle-Insensitive 3-Bit Reconfigurable Intelligent Surface. IEEE Transactions on Antennas and Propagation, 2022, 70, 8798-8808.	3.1	55
6	Simultaneous <i>in situ</i> Direction Finding and Field Manipulation Based on Space-Time-Coding Digital Metasurface. IEEE Transactions on Antennas and Propagation, 2022, 70, 4774-4783.	3.1	28
7	A Highâ€Performance Nonlinear Metasurface for Spatialâ€Wave Absorption. Advanced Functional Materials, 2022, 32, .	7.8	29
8	An Ultrawideband Three-Dimensional Bandpass Frequency Selective Surface. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 1238-1242.	2.4	10
9	A programmable diffractive deep neural network based on a digital-coding metasurface array. Nature Electronics, 2022, 5, 113-122.	13.1	171
10	BST-silicon hybrid terahertz meta-modulator for dual-stimuli-triggered opposite transmission amplitude control. Nanophotonics, 2022, 11, 2075-2083.	2.9	30
11	Reconfigurable Intelligent Surfaces: Simplified-Architecture Transmitters—From Theory to Implementations. Proceedings of the IEEE, 2022, 110, 1266-1289.	16.4	37
12	A 1-Bit Coding Metasurface With Polarization Conversion in X-Band. Frontiers in Materials, 2022, 9, .	1.2	6
13	Modeling and Measurements for Multi-path Mitigation with Reconfigurable Intelligent Surfaces. , 2022, , .		6
14	Space-Time-Coding Digital Metasurfaces for New-Architecture Wireless Communications. , 2022, , .		2
15	Joint Radar and Communication Empowered by Digital Programmable Metasurface. Advanced Intelligent Systems, 2022, 4, .	3.3	4
16	Macromodeling of Reconfigurable Intelligent Surface Based on Microwave Network Theory. IEEE Transactions on Antennas and Propagation, 2022, 70, 8707-8717.	3.1	11
17	One-bit quantization is good for programmable coding metasurfaces. Science China Information Sciences, 2022, 65, .	2.7	13
18	Asynchronous Spaceâ€Time oding Digital Metasurface. Advanced Science, 2022, 9, .	5.6	19

#	Article	IF	Citations
19	A Planar 4-Bit Reconfigurable Antenna Array Based on the Design Philosophy of Information Metasurfaces. Engineering, 2022, 17, 64-74.	3.2	13
20	Anisotropic Metasurface Holography in 3-D Space With High Resolution and Efficiency. IEEE Transactions on Antennas and Propagation, 2021, 69, 302-316.	3.1	34
21	Linear and Nonlinear Polarization Syntheses and Their Programmable Controls based on Anisotropic Timeâ€Domain Digital Coding Metasurface. Small Structures, 2021, 2, 2000060.	6.9	58
22	Wireless Communications With Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement. IEEE Transactions on Wireless Communications, 2021, 20, 421-439.	6.1	685
23	High Efficiency Polarizationâ€Encoded Holograms with Ultrathin Bilayer Spinâ€Decoupled Information Metasurfaces. Advanced Optical Materials, 2021, 9, 2001609.	3.6	44
24	Folded Transmitarray Antenna With Circular Polarization Based on Metasurface. IEEE Transactions on Antennas and Propagation, 2021, 69, 806-814.	3.1	71
25	Controllable Reflection-Enhancement Metasurfaces via Amplification Excitation of Transistor Circuit. IEEE Transactions on Antennas and Propagation, 2021, 69, 1477-1482.	3.1	18
26	Programmable Controls to Scattering Properties ofÂaÂRadiation Array. Laser and Photonics Reviews, 2021, 15, 2000449.	4.4	93
27	Linear and Nonlinear Polarization Syntheses and Their Programmable Controls based on Anisotropic Timeâ€Domain Digital Coding Metasurface. Small Structures, 2021, 2, 2170003.	6.9	5
28	Fabry-P \tilde{A} ©rot Resonator Antenna in Equivalent-Medium Metamaterials. IEEE Transactions on Antennas and Propagation, 2021, 69, 7906-7911.	3.1	5
29	Design and Implementation of MIMO Transmission Based on Dual-Polarized Reconfigurable Intelligent Surface. IEEE Wireless Communications Letters, 2021, 10, 2155-2159.	3.2	29
30	Multilayered Graphene-Assisted Broadband Scattering Suppression through an Ultrathin and Ultralight Metasurface. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7698-7704.	4.0	17
31	Control of the harmonic near-field distributions by an active metasurface loaded with pin diodes. Photonics Research, 2021, 9, 344.	3.4	16
32	Tunable Acoustic Metasurface for Three-Dimensional Wave Manipulations. Physical Review Applied, 2021, 15, .	1.5	43
33	Orbitalâ€Angularâ€Momentumâ€Encrypted Holography Based on Coding Information Metasurface. Advanced Optical Materials, 2021, 9, 2002155.	3.6	62
34	A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nature Electronics, 2021, 4, 218-227.	13.1	224
35	Wireless Communication Based on Information Metasurfaces. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1493-1510.	2.9	77
36	A reconfigurable active acoustic metalens. Applied Physics Letters, 2021, 118, .	1.5	72

#	Article	IF	Citations
37	Smart Doppler Cloak Operating in Broad Band and Full Polarizations. Advanced Materials, 2021, 33, e2007966.	11.1	52
38	Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Optics Express, 2021, 29, 14078.	1.7	107
39	User Tracking and Wireless Digital Transmission through a Programmable Metasurface. Advanced Materials Technologies, 2021, 6, 2001254.	3.0	12
40	1-bit reconfigurable transmitarray with low loss and wide bandwidth. New Journal of Physics, 2021, 23, 065006.	1.2	13
41	Linearly Sweeping Leaky-Wave Antenna With High Scanning Rate. IEEE Transactions on Antennas and Propagation, 2021, 69, 3214-3223.	3.1	15
42	Polarization Modulation for Wireless Communications Based on Metasurfaces. Advanced Functional Materials, 2021, 31, 2103379.	7.8	53
43	Broadband trifunctional metasurface and its application in a lens antenna. Optics Express, 2021, 29, 23244.	1.7	9
44	Anisotropic and nonlinear metasurface for multiple functions. Science China Information Sciences, 2021, 64, 1.	2.7	11
45	Graphene-based anisotropic polarization meta-filter. Materials and Design, 2021, 206, 109768.	3.3	65
46	Interplay Between RIS and AI in Wireless Communications: Fundamentals, Architectures, Applications, and Open Research Problems. IEEE Journal on Selected Areas in Communications, 2021, 39, 2271-2288.	9.7	25
47	Simultaneous Conversion of Polarization and Frequency via Timeâ€Divisionâ€Multiplexing Metasurfaces. Advanced Optical Materials, 2021, 9, 2101043.	3.6	14
48	Millimeter-Wave LTSA Array Fed by High-Order Modes With a Low Cross-Polarization Level and Relaxed Fabrication Tolerance. IEEE Transactions on Antennas and Propagation, 2021, 69, 8335-8344.	3.1	7
49	Some Recent Advances in Space-Time-Coding Metasurfaces. , 2021, , .		0
50	Reconfigurable Electromagnetic Diode and Limiter via Digital Nonlinear Metasurface., 2021,,.		0
51	A 1-Bit Reconfigurable Antenna in Ku-Band. , 2021, , .		2
52	An OOK Wireless Communication System Based on Transmissive Digital Coding Metasurface. , 2021, , .		1
53	On Channel Reciprocity in Reconfigurable Intelligent Surface Assisted Wireless Networks. IEEE Wireless Communications, 2021, 28, 94-101.	6.6	41
54	Two-Channel VO2 Memory Meta-Device for Terahertz Waves. Nanomaterials, 2021, 11, 3409.	1.9	9

#	Article	IF	Citations
55	Phase Coding Framework of Digital Metamaterials Based on Convex Optimization. , 2021, , .		О
56	Wideband Leaky-Wave Antennas Loaded With Gradient Metasurface for Fixed-Beam Radiations With Customized Tilting Angles. IEEE Transactions on Antennas and Propagation, 2020, 68, 161-170.	3.1	21
57	Information theory of metasurfaces. National Science Review, 2020, 7, 561-571.	4.6	34
58	Glide-Symmetric Lens Antenna in Gap Waveguide Technology. IEEE Transactions on Antennas and Propagation, 2020, 68, 2612-2620.	3.1	21
59	Realization of Multi-Modulation Schemes for Wireless Communication by Time-Domain Digital Coding Metasurface. IEEE Transactions on Antennas and Propagation, 2020, 68, 1618-1627.	3.1	105
60	Broadband Folded Reflectarray Fed by a Dielectric Resonator Antenna. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 178-182.	2.4	10
61	Dynamically Realizing Arbitrary Multi-Bit Programmable Phases Using a 2-Bit Time-Domain Coding Metasurface. IEEE Transactions on Antennas and Propagation, 2020, 68, 2984-2992.	3.1	69
62	Multiâ€Band Tunable Chiral Metamaterial for Asymmetric Transmission and Absorption of Linearly Polarized Electromagnetic Waves. Advanced Theory and Simulations, 2020, 3, 2000179.	1.3	11
63	Wideband circularly polarized aperture coupled DRA array with sequential-phase feed at X-band. AEJ - Alexandria Engineering Journal, 2020, 59, 4901-4908.	3.4	16
64	Broadband and ultrathin Huygens metasurface with high transmittance. Journal Physics D: Applied Physics, 2020, 53, 455102.	1.3	9
65	Arbitrary manipulations of dual harmonics and their wave behaviors based on space-time-coding digital metasurface. Applied Physics Reviews, 2020, 7, .	5.5	36
66	Design and Implementation of MIMO Transmission through Reconfigurable Intelligent Surface. , 2020, , .		9
67	Fullâ€State Synthesis of Electromagnetic Fields using High Efficiency Phaseâ€Only Metasurfaces. Advanced Functional Materials, 2020, 30, 2004144.	7.8	40
68	Information Metamaterial Systems. IScience, 2020, 23, 101403.	1.9	132
69	Generation of High-Order Waveguide Modes with Reduced Symmetric Protection. Physical Review Applied, 2020, 14, .	1.5	8
70	Digitalâ€Codingâ€Feeding Metasurfaces for Differently Polarized Wave Emission, Orbit Angular Momentum Generation, and Scattering Manipulation. Advanced Photonics Research, 2020, 1, 2000012.	1.7	31
71	Enhanced Lightweight Multiscale Convolutional Neural Network for Rolling Bearing Fault Diagnosis. IEEE Access, 2020, 8, 217723-217734.	2.6	22
72	Harmonic information transitions of spatiotemporal metasurfaces. Light: Science and Applications, 2020, 9, 198.	7.7	27

#	Article	IF	Citations
73	Highâ€Efficiency Synthesizer for Spatial Waves Based on Spaceâ€Timeâ€Coding Digital Metasurface. Laser and Photonics Reviews, 2020, 14, 1900133.	4.4	63
74	Wireless Communications with Programmable Metasurface: New Paradigms, Opportunities, and Challenges on Transceiver Design. IEEE Wireless Communications, 2020, 27, 180-187.	6.6	183
75	Metasurfaceâ€Based Spatial Phasers for Analogue Signal Processing. Advanced Optical Materials, 2020, 8, 2000128.	3.6	12
76	MIMO Transmission Through Reconfigurable Intelligent Surface: System Design, Analysis, and Implementation. IEEE Journal on Selected Areas in Communications, 2020, 38, 2683-2699.	9.7	242
77	Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics. Nanophotonics, 2020, 9, 2771-2781.	2.9	27
78	Editing Arbitrarily Linear Polarizations Using Programmable Metasurface. Physical Review Applied, 2020, 13, .	1.5	64
79	Resonance-based sparse adaptive variational mode decomposition and its application to the feature extraction of planetary gearboxes. PLoS ONE, 2020, 15, e0231540.	1.1	5
80	A Thin Selfâ€Feeding Janus Metasurface for Manipulating Incident Waves and Emitting Radiation Waves Simultaneously. Annalen Der Physik, 2020, 532, 2000020.	0.9	98
81	Launcher of high-order Bessel vortex beam carrying orbital angular momentum by designing anisotropic holographic metasurface. Applied Physics Letters, 2020, 117, .	1.5	16
82	Smart sensing metasurface with self-defined functions in dual polarizations. Nanophotonics, 2020, 9, 3271-3278.	2.9	97
83	Space-time Coding Metasurface for Wireless Communication. , 2020, , .		2
84	Realization of Reconfigurable Intelligent Surface-Based Alamouti Space-Time Transmission. , 2020, , .		11
85	A Low-Profile Wideband Phased Array Antenna Using EBG Structures in P-band. , 2019, , .		1
86	Reflection phase dispersion editing generates wideband invisible acoustic Huygens's metasurface. Journal of the Acoustical Society of America, 2019, 146, 166-171.	0.5	10
87	Breaking Reciprocity with Spaceâ€Timeâ€Coding Digital Metasurfaces. Advanced Materials, 2019, 31, e1904069.	11.1	208
88	A Transmissive Coding Metasurface. , 2019, , .		2
89	Metasurfaces: Wireless Communications through a Simplified Architecture Based on Timeâ€Domain Digital Coding Metasurface (Adv. Mater. Technol. 7/2019). Advanced Materials Technologies, 2019, 4, 1970037.	3.0	10
90	Intensityâ€Dependent Metasurface with Digitally Reconfigurable Distribution of Nonlinearity. Advanced Optical Materials, 2019, 7, 1900792.	3.6	33

#	Article	IF	Citations
91	Manipulation of Electromagnetic and Acoustic Wave Behaviors via Shared Digital Coding Metallic Metasurfaces. Advanced Intelligent Systems, 2019, 1, 1900038.	3.3	15
92	Digital Nonlinear Metasurface with Customizable Nonreciprocity. Advanced Functional Materials, 2019, 29, 1906635.	7.8	40
93	One-dimensional tightly coupled array based on frequency selective surface., 2019,,.		0
94	Continuous Leaky-wave Scanning Using Gap Waveguide and Gradient Metasurface., 2019,,.		3
95	Concentric designer plasmon hybridization in deep subwavelength metamaterial resonator. Applied Physics Letters, 2019, 115, .	1.5	11
96	Routing Acoustic Waves via a Metamaterial with Extreme Anisotropy. Physical Review Applied, 2019, 12 , .	1.5	16
97	Multi-Beam Metasurface Antenna by Combining Phase Gradients and Coding Sequences. IEEE Access, 2019, 7, 62087-62094.	2.6	18
98	Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design. Advanced Science, 2019, 6, 1900128.	5. 6	236
99	A broadband planar acoustic metamaterial lens. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1955-1959.	0.9	4
100	Programmable metasurfaceâ€based RF chainâ€free 8PSK wireless transmitter. Electronics Letters, 2019, 55, 417-420.	0.5	121
101	Ultrathin and flexible directional coupler with arbitrary coupling level using s-shaped spoof surface plasmon polariton coupled-line. Applied Physics Express, 2019, 12, 054005.	1.1	9
102	The Future of Wireless?. Electronics Letters, 2019, 55, 360-361.	0.5	15
103	Multiphysical Digital Coding Metamaterials for Independent Control of Broadband Electromagnetic and Acoustic Waves with a Large Variety of Functions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17050-17055.	4.0	25
104	Vortex beam generated by circular-polarized metasurface reflector antenna. Journal Physics D: Applied Physics, 2019, 52, 255306.	1.3	30
105	Wireless Communications through a Simplified Architecture Based on Timeâ€Domain Digital Coding Metasurface. Advanced Materials Technologies, 2019, 4, 1900044.	3.0	134
106	Multi-band Tunable Asymmetric Transmission of Linearly Polarized Electromagnetic Waves Achieved by Active Chiral Metamaterial., $2019, \dots$		3
107	Ultrathin Self-feeding Metasurface with Broadband Polarization Conversion and Electromagnetic Emission. , 2019, , .		0
108	Multiband Fractal Metasurface with Linear to Linear and Linear to Circular Polarization Conversion. , 2019, , .		1

#	Article	IF	CITATIONS
109	Fault Diagnosis of Wind Turbine Drive Train using Time-Frequency Estimation and CNN. , 2019, , .		4
110	A reflective acoustic meta-diffuser based on the coding meta-surface. Journal of Applied Physics, 2019, 126, .	1.1	14
111	Acoustic tunable metamaterials based on anisotropic unit cells. Applied Physics Letters, 2019, 115, 231902.	1.5	12
112	Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. National Science Review, 2019, 6, 231-238.	4.6	298
113	Microwave curing of multidirectional carbon fiber reinforced polymer composites. Composite Structures, 2019, 212, 83-93.	3.1	37
114	Asymmetric transmission of acoustic waves in a waveguide via gradient index metamaterials. Science Bulletin, 2019, 64, 808-813.	4.3	36
115	Wideband High-Absorption Electromagnetic Absorber With Chaos Patterned Surface. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 197-201.	2.4	39
116	Transparently curved metamaterial with broadband millimeter wave absorption. Photonics Research, 2019, 7, 478.	3.4	75
117	Wireless communications with programmable metasurface: Transceiver design and experimental results. China Communications, 2019, 16, 46-61.	2.0	158
118	An optically transparent metasurface for broadband microwave antireflection. Applied Physics Letters, $2018,112,$	1.5	89
119	2D achromatic flat focusing lens based on dispersion engineering of spoof surface plasmon polaritons: broadband and profile-robust. Journal Physics D: Applied Physics, 2018, 51, 045108.	1.3	7
120	Realization of an Ultra-thin Metasurface to Facilitate Wide Bandwidth, Wide Angle Beam Scanning. Scientific Reports, 2018, 8, 4761.	1.6	18
121	Orbital Angular Momentum Generation Using a Bi-Functional Pancharatnam-Berry Metasurface. , 2018,		0
122	Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums. Optics Express, 2018, 26, 31664.	1.7	21
123	A Sustainable Radar-Infrared Bi-Stealth Coding Metasurface. , 2018, , .		O
124	Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light: Science and Applications, 2018, 7, 90.	7.7	202
125	Transparent Metamaterial with Powerful Wave Manipulation and Large Light Transmittance. , 2018, , .		0
126	Acoustic planar surface retroreflector. Physical Review Materials, 2018, 2, .	0.9	33

#	Article	IF	Citations
127	High-order modes of spoof surface acoustic waves. , 2018, , .		O
128	Polarization-Controllable Orbital Angular Momentum Using Anisotropic Coding Metasurfaces. , 2018, , .		0
129	Tunable Electromagnetic Flow Control in Valley Photonic Crystal Waveguides. Physical Review Applied, 2018, 10, .	1.5	76
130	Space-time-coding digital metasurfaces. Nature Communications, 2018, 9, 4334.	5.8	728
131	Asymmetric Transmission for Linearly Polarized Wave through Tunable Chiral Metasurface. , $2018, \ldots$		2
132	Digtial Metasurface with Simultaneous EM Absorption and Scattering. , 2018, , .		0
133	Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface. Applied Physics Letters, $2018,112,.$	1.5	43
134	Acoustic surface waves on three-dimensional groove gratings with sub-wavelength thickness. Applied Physics Express, 2018, 11, 087301.	1.1	5
135	A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously. Advanced Materials Technologies, 2018, 3, 1800161.	3.0	10
136	Impedanceâ€Matching Wavefrontâ€Transformation Lens Based on Acoustic Metamaterials. Advanced Materials Technologies, 2018, 3, 1800064.	3.0	23
137	A Reconfigurable Broadband Polarization Converter Based on an Active Metasurface. IEEE Transactions on Antennas and Propagation, 2018, 66, 6086-6095.	3.1	157
138	Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction. Optics Express, 2018, 26, 22916.	1.7	32
139	Bifunctional Metamaterials: A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously (Adv. Mater. Technol. 8/2018). Advanced Materials Technologies, 2018, 3, 1870033.	3.0	0
140	Generation of multiband spoof surface acoustic waves via high-order modes. Physical Review B, 2018, 97, .	1.1	9
141	A novel metamaterial with large microwave absorption and sound insulation. , 2018, , .		0
142	Design of acoustic metamaterials using the covariance matrix adaptation evolutionary strategy. Applied Physics Express, 2017, 10, 037301.	1.1	4
143	THz wave manipulation based on coding metasurfaces. , 2017, , .		0
144	Thermally tunable water-substrate broadband metamaterial absorbers. Applied Physics Letters, 2017, 110, .	1.5	127

#	Article	IF	Citations
145	Broadband metamaterial for optical transparency and microwave absorption. Applied Physics Letters, 2017, 110, .	1.5	234
146	Acoustic Metamaterials: Acoustic Magnifying Lens for Farâ€Field High Resolution Imaging Based on Transformation Acoustics (Adv. Mater. Technol. 9/2017). Advanced Materials Technologies, 2017, 2, .	3.0	0
147	Accurate Design of Low Backscattering Metasurface Using Iterative Fourier Transform Algorithm. Scientific Reports, 2017, 7, 11346.	1.6	4
148	Acoustic Magnifying Lens for Farâ€Field High Resolution Imaging Based on Transformation Acoustics. Advanced Materials Technologies, 2017, 2, 1700089.	3.0	15
149	Realization of broadband acoustic metamaterial lens with quasi-conformal mapping. Applied Physics Express, 2017, 10, 087202.	1.1	26
150	Dualâ€Physics Manipulation of Electromagnetic Waves by Systemâ€Level Design of Metasurfaces to Reach Extreme Control of Radiation Beams. Advanced Materials Technologies, 2017, 2, 1600196.	3.0	20
151	Opticalliy transparent metamaterial for broadband millimeter wave absorption., 2017,,.		3
152	Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface. Optics Express, 2017, 25, 7161.	1.7	140
153	Fast design of broadband terahertz diffusion metasurfaces. Optics Express, 2017, 25, 1050.	1.7	27
154	Fast design of low scattering metasurface., 2017,,.		0
155	Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces. ACS Applied Materials & Interfaces, 2017, 9, 21503-21514.	4.0	66
156	Experimental demonstration of compact spoof localized surface plasmons. Optics Letters, 2016, 41, 5418.	1.7	14
157	Freeâ€Standing Metasurfaces for Highâ€Efficiency Transmitarrays for Controlling Terahertz Waves. Advanced Optical Materials, 2016, 4, 384-390.	3.6	37
158	Broadband fractal acoustic metamaterials for low-frequency sound attenuation. Applied Physics Letters, 2016, 109, .	1.5	46
159	Isotropic Holographic Metasurfaces for Dualâ€Functional Radiations without Mutual Interferences. Advanced Functional Materials, 2016, 26, 29-35.	7.8	56
160	Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light: Science and Applications, 2016, 5, e16076-e16076.	7.7	422
161	Frequencyâ€Dependent Dualâ€Functional Coding Metasurfaces at Terahertz Frequencies. Advanced Optical Materials, 2016, 4, 1965-1973.	3.6	125
162	Anomalous Refraction and Nondiffractive Bessel-Beam Generation of Terahertz Waves through Transmission-Type Coding Metasurfaces. ACS Photonics, 2016, 3, 1968-1977.	3.2	175

#	Article	IF	Citations
163	Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams. Advanced Science, 2016, 3, 1600156.	5.6	343
164	Controlling the Bandwidth of Terahertz Lowâ€Scattering Metasurfaces. Advanced Optical Materials, 2016, 4, 1773-1779.	3.6	39
165	Metasurfaces: Controlling the Bandwidth of Terahertz Low-Scattering Metasurfaces (Advanced) Tj ETQq1 1 0.784	1314 rgBT 3.6	/Overlock 1
166	Holographic leaky-wave metasurfaces for dual-sensor imaging. Scientific Reports, 2016, 5, 18170.	1.6	20
167	Leaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures. Scientific Reports, 2016, 6, 23974.	1.6	20
168	A method for the bandwidth-control of terahertz low-scattering metasurfaces. , 2016, , .		0
169	Broadband Focusing Acoustic Lens Based on Fractal Metamaterials. Scientific Reports, 2016, 6, 35929.	1.6	47
170	Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging. Scientific Reports, 2016, 6, 23731.	1.6	165
171	Terahertz Broadband Lowâ€Reflection Metasurface by Controlling Phase Distributions. Advanced Optical Materials, 2015, 3, 1405-1410.	3.6	105
172	Modified Luneburg Lens Based on Metamaterials. International Journal of Antennas and Propagation, 2015, 2015, 1-6.	0.7	12
173	Suppression of scattering based on an ultrathin metasurface., 2015, , .		0
174	A low scattering coding metasurface. , 2015, , .		1
175	Microwave antennas and low RCS surfaces based on metamaterials. , 2015, , .		0
176	Surface Fourier-transform lens using a metasurface. Journal Physics D: Applied Physics, 2015, 48, 035107.	1.3	14
177	Generation of spatial Bessel beams using holographic metasurface. Optics Express, 2015, 23, 7593.	1.7	89
178	Bifunctional metasurface for electromagnetic cloaking and illusion. Applied Physics Express, 2015, 8, 092601.	1.1	23
179	Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light: Science and Applications, 2015, 4, e324-e324.	7.7	461
180	REDUCTION OF RADAR CROSS SECTION BASED ON A METASURFACE. Progress in Electromagnetics Research, 2014, 146, 71-76.	1.6	56

#	Article	IF	CITATIONS
181	A low RCS metasurface for THz applications. , 2014, , .		4
182	A switchable zero index metamaterial. , 2014, , .		1
183	Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes. Applied Physics Letters, 2014, 104, 053504.	1.5	11
184	Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science and Applications, 2014, 3, e218-e218.	7.7	2,167
185	Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser and Photonics Reviews, 2014, 8, 146-151.	4.4	553
186	Three-Dimensional Anisotropic Zero-Index Lenses. IEEE Transactions on Antennas and Propagation, 2014, 62, 4135-4142.	3.1	18
187	A single metamaterial plate as bandpass filter, transparent wall, and polarization converter controlled by polarizations. Applied Physics Letters, 2014, 105, 081908.	1.5	9
188	Anisotropic metamaterials for polarization-controlled devices. , 2014, , .		0
189	A metasurface for RCS reduction. , 2014, , .		6
190	Frequency-Controls of Electromagnetic Multi-Beam Scanning by Metasurfaces. Scientific Reports, 2014, 4, 6921.	1.6	107
191	Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm. Scientific Reports, 2014, 4, 5935.	1.6	141
192	A tunable metamaterial absorber using varactor diodes. New Journal of Physics, 2013, 15, 043049.	1.2	260
193	Intrinsic mode characteristic analysis and extraction in underwater cylindrical shell acoustic radiation. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1339-1345.	2.0	3
194	A Simple System for Measuring Antenna Radiation Patterns in the Wi-Fi Band. IEEE Antennas and Propagation Magazine, 2013, 55, 191-202.	1.2	2
195	Miniaturized Cavity Resonator Supporting Both Electromagnetic Resonances and Magneto-Inductive Resonances. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 108-111.	2.4	0
196	Design and rigorous analysis of transformation-optics scaling devices. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 1698.	0.8	10
197	Broadband Allâ€Dielectric Magnifying Lens for Farâ€Field Highâ€Resolution Imaging. Advanced Materials, 2013, 25, 6963-6968.	11.1	85
198	A Highly Directive Slot Antenna With Sidewall Corrugated Structure. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 1582-1585.	2.4	13

#	Article	IF	Citations
199	Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide. Applied Physics Letters, 2013, 103, 021908.	1.5	18
200	Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials. Applied Physics Letters, 2012, 101, 141902.	1. 5	11
201	Directive radiation of electromagnetic waves based on anisotropic metamaterials., 2012,,.		2
202	Directivity enhancement based on anisotropic zero refraction index metamaterials., 2012,,.		2
203	Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials. Physical Review Letters, 2012, 108, 213903.	2.9	114
204	Increasing the Bandwidth of Microstrip Patch Antenna by Loading Compact Artificial Magneto-Dielectrics. IEEE Transactions on Antennas and Propagation, 2011, 59, 373-378.	3.1	48
205	Ultrathin multiband gigahertz metamaterial absorbers. Journal of Applied Physics, 2011, 110, .	1.1	354
206	Shrinking an arbitrary object as one desires using metamaterials. Applied Physics Letters, 2011, 98, .	1.5	88
207	Several Types of Antennas Composed of Microwave Metamaterials. IEICE Transactions on Communications, 2011, E94-B, 1142-1152.	0.4	6
208	Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials. Applied Physics Letters, 2011, 99, 131913.	1.5	54
209	A broadband metamaterial cylindrical lens antenna. Science Bulletin, 2010, 55, 2066-2070.	1.7	37
210	Study of three-dimensional optical-transformation devices based on analytical field-transformation theory, , 2010, , .		0
211	Research on the one-dimensional randomly gradient index coating. , 2010, , .		1
212	A class of line-transformed cloaks with easily realizable constitutive parameters. Journal of Applied Physics, 2010, 107, 034911.	1.1	20
213	Illusion media: Generating virtual objects using realizable metamaterials. Applied Physics Letters, 2010, 96, .	1.5	91
214	A Complementary Lens Based on Broadband Metamaterials. Journal of Electromagnetic Waves and Applications, 2010, 24, 93-101.	1.0	13
215	Virtual conversion from metal object to dielectric object using metamaterials. Optics Express, 2010, 18, 11276.	1.7	40
216	Diffuse reflections by randomly gradient index metamaterials. Optics Letters, 2010, 35, 808.	1.7	42

#	Article	IF	Citations
217	An omnidirectional electromagnetic absorber made of metamaterials. New Journal of Physics, 2010, 12, 063006.	1.2	241
218	Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials. Journal Physics D: Applied Physics, 2010, 43, 335406.	1.3	58
219	Broadband and Low-Loss Non-Resonant Metamaterials. , 2010, , 87-97.		1
220	INVESTIGATIONS OF THE ELECTROMAGNETIC PROPERTIES OF THREE-DIMENSIONAL ARBITRARILY-SHAPED CLOAKS. Progress in Electromagnetics Research, 2009, 94, 105-117.	1.6	41
221	Broadband planar Luneburg lens based on complementary metamaterials. Applied Physics Letters, 2009, 95, 181901.	1.5	112
222	X-band high directivity lens antenna realized by gradient index metamaterials. , 2009, , .		14
223	Transformation of Different Kinds of Electromagnetic Waves Using Metamaterials. Journal of Electromagnetic Waves and Applications, 2009, 23, 583-592.	1.0	13
224	CG-FFT algorithm for three-dimensional inhomogeneous and biaxial metamaterials. Waves in Random and Complex Media, 2009, 19, 49-64.	1.6	4
225	Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials. Optics Express, 2009, 17, 21030.	1.7	72
226	Study of active superlens and evanescent wave amplification using an active metamaterial model. EPJ Applied Physics, 2009, 48, 21101.	0.3	3
227	Fast and accurate simulations of transmission-line metamaterials using transmission-matrix method. PMC Physics B, 2008, 1, 10.	0.9	4
228	Exact design of evanescent-wave amplification using bilayer periodic circuit structures. Microwave and Optical Technology Letters, 2008, 50, 1870-1873.	0.9	1
229	Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies. Physical Review Letters, 2008, 100, 023903.	2.9	408
230	Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials. Physical Review E, 2008, 78, 066607.	0.8	74
231	Cylindrical-to-plane-wave conversion via embedded optical transformation. Applied Physics Letters, 2008, 92, .	1.5	116
232	Arbitrarily elliptical–cylindrical invisible cloaking. Journal Physics D: Applied Physics, 2008, 41, 085504.	1.3	129
233	Invisibility cloak without singularity. Applied Physics Letters, 2008, 93, 194102.	1.5	116
234	Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces. Applied Physics Letters, 2008, 92, .	1.5	154

#	Article	IF	CITATIONS
235	Realization and Experimental Verification of Chiral Cascaded Circuit. IEEE Microwave and Wireless Components Letters, 2008, 18, 308-310.	2.0	3
236	Gradient index metamaterials based on dielectric disks. , 2008, , .		1
237	A superstrate for microstrip patch antennas. , 2008, , .		1
238	Partial focusing by indefinite complementary metamaterials. Physical Review B, 2008, 78, .	1.1	21
239	Analytical design of conformally invisible cloaks for arbitrarily shaped objects. Physical Review E, 2008, 77, 066607.	0.8	108
240	Electric and magnetic responses from metamaterial unit cells at terahertz., 2008,,.		4
241	Study of active superlens using an active metamaterial model. , 2008, , .		0
242	Improvement on two-dimensional experimental platform for metamaterials., 2008,,.		0
243	Layered high-gain lens antennas via discrete optical transformation. Applied Physics Letters, 2008, 93, .	1.5	65
244	Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens. Applied Physics Letters, 2008, 92, .	1.5	66
245	Near/far-field transformation for two-dimensional metamaterials. , 2008, , .		0
246	Arbitrarily elliptical–cylindrical invisible cloaking. Journal Physics D: Applied Physics, 2008, 41, 199801-199801.	1.3	16
247	A SYMMETRICAL CIRCUIT MODEL DESCRIBING ALL KINDS OF CIRCUIT METAMATERIALS. Progress in Electromagnetics Research B, 2008, 5, 63-76.	0.7	21
248	Realization of a super waveguide for high-power-density generation and transmission using right- and left-handed transmission-line circuits. Physical Review E, 2007, 76, 036602.	0.8	7
249	Circuit verification of tunneling effect in zero permittivity medium. Applied Physics Letters, 2007, 91, 234105.	1.5	25
250	Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model. Physical Review B, 2007, 75, .	1.1	32
251	Circuit Representation of Isotropic Chiral Media. IEEE Transactions on Antennas and Propagation, 2007, 55, 2754-2760.	3.1	4
252	Waves in planar waveguide containing chiral nihility metamaterial. Optics Communications, 2007, 276, 317-321.	1.0	52

#	Article	lF	CITATIONS
253	Optimal parameter relations to realize high-power transmission in planar waveguide filled with lossy left-handed material. Physica B: Condensed Matter, 2007, 392, 298-303.	1.3	1
254	Energy localization using anisotropic metamaterials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 367, 259-262.	0.9	7
255	Realization of Left-Handed Transmission Structures Using the Substrate Integrated Waveguide Technology. , 2006, , .		6
256	Experimental Verification of Evanescent-Wave Amplification and Transmission Using Metamaterial Structures., 2006,,.		0
257	Infinite guided modes in a planar waveguide with a biaxially anisotropic metamaterial. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 1989.	0.8	9
258	Reflection and refraction properties of plane waves on the interface of uniaxially anisotropic chiral media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 3203.	0.8	26
259	Negative refractions and backward waves in biaxially anisotropic chiral media. Optics Express, 2006, 14, 6322.	1.7	17
260	Arbitrarily dual-band components using simplified structures of conventional CRLH TLs. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 2902-2909.	2.9	62
261	Strong localization of EM waves using open cavities made of left-handed transmission-line media. Microwave and Optical Technology Letters, 2006, 48, 1662-1665.	0.9	1
262	Experiments on evanescent-wave amplification and transmission using metamaterial structures. Physical Review B, 2006, 73, .	1.1	36
263	Lateral shifts of optical beams on the interface of anisotropic metamaterial. Journal of Applied Physics, 2006, 99, 066114.	1.1	14
264	Circuit Representation of Isotropic Chiral Medium. , 2006, , .		1
265	The Realization of Super Waveguide Using Left-Handed Transmission-Line Circuits. , 2006, , .		0
266	Metamaterials Realized by Novel Compact Structures. , 2006, , .		0
267	Negative refractions in uniaxially anisotropic chiral media. Physical Review B, 2006, 73, .	1.1	86
268	Lossy and retardation effects on the localization of EM waves using a left-handed medium slab. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 336, 235-244.	0.9	13
269	Electromagnetic properties of a left-handed medium slab excited by three-dimensional electric dipoles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 345, 439-447.	0.9	8
270	Localization of electromagnetic energy using a left-handed-medium slab. Physical Review B, 2005, 71, .	1.1	60

#	Article	IF	CITATIONS
271	High-power generation and transmission through a left-handed material. Physical Review B, 2005, 72, .	1.1	22
272	Electromagnetic wave localization using a left-handed transmission-line superlens. Physical Review B, 2005, 72, .	1.1	23
273	Electromagnetic interactions between a line source and anisotropic biaxial media with partially negative constitutive parameters. Journal of Applied Physics, 2005, 98, 074903.	1.1	3
274	A compact structure for energy localization using a thin grounded left-handed medium slab. Optics Express, 2005, 13, 770.	1.7	9
275	High-power generation and transmission in a left-handed planar waveguide excited by an electric dipole. Optics Express, 2005, 13, 10230.	1.7	8
276	Structure for localizing electromagnetic waves with a left-handed-medium slab and a conducting plane. Optics Letters, 2005, 30, 1216.	1.7	9
277	Guided modes in a planar anisotropic biaxial slab with partially negative permittivity and permeability. Applied Physics Letters, 2005, 87, 174102.	1.5	16
278	Realization of Arbitrary Dual-Band Components Using an Improved CRLH Transmission-Line Model. , 0, ,		0
279	A Novel Cavity with Size-Independent Resonant Frequency Realized by Left-Handed Material., 0,,.		0
280	Suppression of the Timeâ€Domain Sputtering Effect Using Lowâ€Scattering Metasurfaces. Advanced Photonics Research, 0, , 2100332.	1.7	0