YuHao Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3564990/yuhao-liu-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

37	5,933	28	42
papers	citations	h-index	g-index
42	6,838 ext. citations	15.8	5.62
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
37	Nematic fluctuations in iron-oxychalcogenide Mott insulators. <i>Npj Quantum Materials</i> , 2021 , 6,	5	1
36	Magnetic and structural properties of the iron oxychalcogenides La2O2Fe2OM2(M=S,Se). <i>Physical Review B</i> , 2019 , 99,	3.3	2
35	Mechanically transformative electronics, sensors, and implantable devices. <i>Science Advances</i> , 2019 , 5, eaay0418	14.3	70
34	Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. <i>Nature Biomedical Engineering</i> , 2019 , 3, 194-205	19	144
33	3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1800788	10.1	17
32	Intraoperative monitoring of neuromuscular function with soft, skin-mounted wireless devices. <i>Npj Digital Medicine</i> , 2018 , 1,	15.7	13
31	Flexible and Stretchable 3lbensors for Thermal Characterization of Human Skin. <i>Advanced Functional Materials</i> , 2017 , 27, 1701282	15.6	71
30	Soft Elastomers with Ionic Liquid-Filled Cavities as Strain Isolating Substrates for Wearable Electronics. <i>Small</i> , 2017 , 13, 1602954	11	67
29	Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. <i>Nature Protocols</i> , 2017 , 12, 219-237	18.8	44
28	Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. <i>ACS Nano</i> , 2017 , 11, 9614-9635	16.7	873
27	Sensors: Flexible and Stretchable 3l\(\textit{S}\)ensors for Thermal Characterization of Human Skin (Adv. Funct. Mater. 26/2017). Advanced Functional Materials, 2017, 27,	15.6	4
26	Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. <i>Science Advances</i> , 2016 , 2, e1601185	14.3	220
25	Electrodes: Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Long-Term Electrophysiological Recording (Adv. Funct. Mater. 40/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 7280-7280	15.6	
24	Epidermal radio frequency electronics for wireless power transfer. <i>Microsystems and Nanoengineering</i> , 2016 , 2, 16052	7.7	55
23	Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. <i>Science Advances</i> , 2016 , 2, e1600418	14.3	266
22	Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. <i>Science Advances</i> , 2016 , 2, e1601014	14.3	152
21	Flexible Electronics: An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation (Adv. Mater. 22/2016). <i>Advanced Materials</i> , 2016 , 28, 4563	24	6

(2014-2016)

20	An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation. <i>Advanced Materials</i> , 2016 , 28, 4462-71	24	173
19	Ferromagnetic, folded electrode composite as a soft interface to the skin for long-term electrophysiological recording. <i>Advanced Functional Materials</i> , 2016 , 26, 7281-7290	15.6	40
18	Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. <i>Advanced Materials</i> , 2015 , 27, 1731-7	24	117
17	Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics. <i>Cell</i> , 2015 , 162, 662-74	56.2	326
16	A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11757-64	11.5	344
15	Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. <i>Advanced Functional Materials</i> , 2015 , 25, 1338-1343	15.6	34
14	Membranes: Materials and Fractal Designs for 3D Multifunctional Integumentary Membranes with Capabilities in Cardiac Electrotherapy (Adv. Mater. 10/2015). <i>Advanced Materials</i> , 2015 , 27, 1730-1730	24	2
13	Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. <i>Science</i> , 2015 , 347, 154-9	33.3	587
12	3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. <i>Nature Communications</i> , 2014 , 5, 3329	17.4	384
11	Materials and Designs for Wireless Epidermal Sensors of Hydration and Strain. <i>Advanced Functional Materials</i> , 2014 , 24, 3846-3854	15.6	230
10	Transient Electronics: Dissolvable Metals for Transient Electronics (Adv. Funct. Mater. 5/2014). Advanced Functional Materials, 2014 , 24, 644-644	15.6	3
9	Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes. <i>Nature Communications</i> , 2014 , 5, 5332	17.4	37
8	Biodegradable materials for multilayer transient printed circuit boards. <i>Advanced Materials</i> , 2014 , 26, 7371-7	24	109
7	Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. <i>Nature Communications</i> , 2014 , 5, 4496	17.4	571
6	Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small, 2014 , 10, 3083-90	11	208
5	Dissolvable Metals for Transient Electronics. <i>Advanced Functional Materials</i> , 2014 , 24, 645-658	15.6	290
4	Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. <i>Advanced Healthcare Materials</i> , 2014 , 3, 642-8	10.1	200
3	Immunologic and tissue biocompatibility of flexible/stretchable electronics and optoelectronics. <i>Advanced Healthcare Materials</i> , 2014 , 3, 515-25	10.1	80

Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. *IEEE Transactions on Biomedical Engineering*, **2013**, 60, 2848-57

5 76

Epidermal differential impedance sensor for conformal skin hydration monitoring. *Biointerphases*, **2012**, 7, 52

1.8 103