Alison G Power

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3564774/publications.pdf

Version: 2024-02-01

39 papers

3,257 citations

16 h-index 30 g-index

40 all docs

40 docs citations

times ranked

40

5337 citing authors

#	Article	IF	CITATIONS
1	Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2959-2971.	4.0	1,521
2	Pathogen Spillover in Disease Epidemics. American Naturalist, 2004, 164, S79-S89.	2.1	415
3	ENEMY RELEASE? AN EXPERIMENT WITH CONGENERIC PLANT PAIRS AND DIVERSE ABOVE- AND BELOWGROUND ENEMIES. Ecology, 2005, 86, 2979-2989.	3.2	344
4	Earth Stewardship: science for action to sustain the human-earth system. Ecosphere, 2011, 2, art89.	2.2	154
5	The community ecology of pathogens: coinfection, coexistence and community composition. Ecology Letters, 2015, 18, 401-415.	6.4	135
6	Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index. Science of the Total Environment, 2018, 627, 304-313.	8.0	96
7	Lizard diversity and agricultural disturbance in a Caribbean forest landscape. Biodiversity and Conservation, 2001, 10, 711-723.	2.6	93
8	The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands. Virus Research, 2011, 159, 95-100.	2.2	65
9	Diversity and Composition of Viral Communities: Coinfection of Barley and Cereal Yellow Dwarf Viruses in California Grasslands. American Naturalist, 2009, 173, E79-E98.	2.1	57
10	The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	57
11	Vector population growth and conditionâ€dependent movement drive the spread of plant pathogens. Ecology, 2017, 98, 2145-2157.	3.2	49
12	Modeling Virus Coinfection to Inform Management of Maize Lethal Necrosis in Kenya. Phytopathology, 2017, 107, 1095-1108.	2.2	41
13	Cropâ€dominated landscapes have higher vectorâ€borne plant virus prevalence. Journal of Applied Ecology, 2017, 54, 1190-1198.	4.0	31
14	Anthropogenic influences on emergence of vector-borne plant viruses: the persistent problem of Potato virus Y. Current Opinion in Virology, 2018, 33, 177-183.	5 . 4	29
15	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. PLoS Biology, 2019, 17, e3000551.	5 . 6	26
16	Modeling Approach Influences Dynamics of a Vector-Borne Pathogen System. Bulletin of Mathematical Biology, 2019, 81, 2011-2028.	1.9	20
17	Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission. ELife, 2022, 11, .	6.0	15
18	Linking Ecological Sustainability and World Food Needs. Environment, Development and Sustainability, 1999, 1, 185-196.	5.0	14

#	Article	IF	CITATIONS
19	JURISDICTION OVER ENDANGERED SPECIES' HABITAT: THE IMPACTS OF PEOPLE AND PROPERTY ON RECOVERY PLANNING., 2002, 12, 690-700.		14
20	EVALUATING THE INTERNAL CONSISTENCY OF RECOVERY PLANS FOR FEDERALLY ENDANGERED SPECIES. , 2002, 12, 648-654.		11
21	Inter- and intraspecific diversity of food legumes among households and communities in Ethiopia. PLoS ONE, 2019, 14, e0227074.	2.5	10
22	Biocultural diversity and food sovereignty: a case study of human-plant relations in northwestern Ethiopia. Food Security, 2019, 11, 183-199.	5. 3	9
23	Aphid density and community composition differentially affect apterous aphid movement and plant virus transmission. Ecological Entomology, 2017, 42, 245-254.	2.2	8
24	Characteristics and drivers of plant virus community spatial patterns in US west coast grasslands. Oikos, 2017, 126, 1281-1290.	2.7	7
25	Contextâ€dependent interactions between pathogens and a mutualist affect pathogen fitness and mutualist benefits to hosts. Ecology, 2018, 99, 2833-2843.	3.2	7
26	Landscapeâ€dependent effects of varietal mixtures on insect pest control and implications for farmer profits. Ecological Applications, 2021, 31, e02246.	3.8	7
27	Survivorship and development rates of banana weevils reared on excised plant material of different banana cultivars. International Journal of Tropical Insect Science, 2010, 30, 77-83.	1.0	5
28	Intraâ€annual variation and landscape composition interactively affect aphid community composition. Ecosphere, 2019, 10, e02710.	2.2	4
29	Survivorship and development of the banana weevil Cosmopolites sordidus (Coleoptera:) Tj ETQq1 1 0.784314 rg Science, 2010, 30, 186-191.	gBT /Overlo 1.0	ock 10 Tf 50 3
30	Use and management of tamarind (<i>Tamarindus indica</i> L., Fabaceae) local morphotypes by communities in Tigray, Northern Ethiopia. Forests Trees and Livelihoods, 2020, 29, 81-98.	1.2	3
31	Diversity of farmers' varieties of faba bean (Vicia faba L.) in northeastern and southwestern Ethiopia. Agroecology and Sustainable Food Systems, 2022, 46, 650-671.	1.9	3
32	Viral infection can reduce the net nitrogen inputs of legume break crops and cover crops. Ecological Applications, 2021, 31, e02241.	3.8	2
33	Field pea diversity and its contribution to farmers' livelihoods in northern Ethiopia. , 0, , .		2
34	Coinfections by noninteracting pathogens are not independent and require new tests of interaction., 2019, 17, e3000551.		0
35	Coinfections by noninteracting pathogens are not independent and require new tests of interaction., 2019, 17, e3000551.		0
36	Coinfections by noninteracting pathogens are not independent and require new tests of interaction., 2019, 17, e3000551.		0

#	Article	IF	CITATIONS
37	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		O
38	Coinfections by noninteracting pathogens are not independent and require new tests of interaction., $2019,17,e3000551.$		0
39	Coinfections by noninteracting pathogens are not independent and require new tests of interaction. , 2019, 17, e3000551.		O