John A Carver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3564637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS Journal, 2009, 276, 5960-5972.	2.2	473
2	Clusterin Has Chaperone-like Activity Similar to That of Small Heat Shock Proteins. Journal of Biological Chemistry, 1999, 274, 6875-6881.	1.6	399
3	Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. Journal of Dairy Science, 2013, 96, 6127-6146.	1.4	338
4	The structure of melittin. A 1H-NMR study in methanol. FEBS Journal, 1988, 173, 139-146.	0.2	247
5	The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis. FEBS Journal, 2000, 267, 5330-5341.	0.2	244
6	Clusterin Is an ATPâ^'Independent Chaperone with Very Broad Substrate Specificity that Stabilizes Stressed Proteins in a Folding-Competent Stateâ€. Biochemistry, 2000, 39, 15953-15960.	1.2	234
7	Crystallin proteins and amyloid fibrils. Cellular and Molecular Life Sciences, 2009, 66, 62-81.	2.4	220
8	Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significance. Peptides, 2004, 25, 1035-1054.	1.2	209
9	Interaction of the Molecular Chaperone αB-Crystallin with α-Synuclein: Effects on Amyloid Fibril Formation and Chaperone Activity. Journal of Molecular Biology, 2004, 340, 1167-1183.	2.0	198
10	Amyloid Fibril Formation by Bovine Milk κ-Casein and Its Inhibition by the Molecular Chaperones αS- and β-Casein. Biochemistry, 2005, 44, 17027-17036.	1.2	193
11	The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1562-70.	3.3	181
12	Small heat-shock proteins: important players in regulating cellular proteostasis. Cellular and Molecular Life Sciences, 2015, 72, 429-451.	2.4	175
13	Small Heat-shock Proteins and Clusterin: Intra- and Extracellular Molecular Chaperones with a Common Mechanism of Action and Function?. IUBMB Life, 2003, 55, 661-668.	1.5	172
14	Amyloid Fibril Formation by Lens Crystallin Proteins and Its Implications for Cataract Formation. Journal of Biological Chemistry, 2004, 279, 3413-3419.	1.6	166
15	Mimicking phosphorylation of αB-crystallin affects its chaperone activity. Biochemical Journal, 2007, 401, 129-141.	1.7	159
16	The growing world of small heat shock proteins: from structure to functions. Cell Stress and Chaperones, 2017, 22, 601-611.	1.2	158
17	Casein Proteins as Molecular Chaperones. Journal of Agricultural and Food Chemistry, 2005, 53, 2670-2683.	2.4	144
18	Binding of the Molecular Chaperone αB-Crystallin to Aβ Amyloid Fibrils Inhibits Fibril Elongation. Biophysical Journal, 2011, 101, 1681-1689.	0.2	143

#	Article	IF	CITATIONS
19	High-resolution proton NMR study of the solution structure of alamethicin. Biochemistry, 1987, 26, 1043-1050.	1.2	142
20	Identification by1H NMR spectroscopy of flexible C-terminal extensions in bovine lens α-crystallin. FEBS Letters, 1992, 311, 143-149.	1.3	139
21	The Interaction of αB-Crystallin with Mature α-Synuclein Amyloid Fibrils Inhibits Their Elongation. Biophysical Journal, 2010, 98, 843-851.	0.2	136
22	The Solution Structure and Activity of Caerin 1.1, an Antimicrobial Peptide from the Australian Green Tree Frog, Litoria Splendida. FEBS Journal, 1997, 247, 545-557.	0.2	127
23	(â^')-Epigallocatechin-3-Gallate (EGCG) Maintains κ-Casein in Its Pre-Fibrillar State without Redirecting Its Aggregation Pathway. Journal of Molecular Biology, 2009, 392, 689-700.	2.0	127
24	Immobilization of the C-terminal Extension of Bovine αA-Crystallin Reduces Chaperone-like Activity. Journal of Biological Chemistry, 1996, 271, 29060-29066.	1.6	119
25	Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Letters, 2002, 513, 259-266.	1.3	117
26	The Interaction of the Molecular Chaperone α-Crystallin with Unfolding α-Lactalbumin: A Structural and Kinetic Spectroscopic Study. Journal of Molecular Biology, 2002, 318, 815-827.	2.0	108
27	Mouse Hsp25, a small heat shock protein. FEBS Journal, 2000, 267, 1923-1932.	0.2	107
28	Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6336-6340.	1.0	104
29	The Interaction of the Molecular Chaperone, α-Crystallin, with Molten Globule States of Bovine α-Lactalbumin. Journal of Biological Chemistry, 1997, 272, 27722-27729.	1.6	102
30	A Possible Chaperone-like Quaternary Structure for α-Crystallin. Experimental Eye Research, 1994, 59, 231-234.	1.2	99
31	Amyloid Fibril Formation by Bovine Milk α _{s2} -Casein Occurs under Physiological Conditions Yet Is Prevented by Its Natural Counterpart, α _{s1} -Casein. Biochemistry, 2008, 47, 3926-3936.	1.2	97
32	Small Heat-shock Proteins Prevent α-Synuclein Aggregation via Transient Interactions and Their Efficacy Is Affected by the Rate of Aggregation. Journal of Biological Chemistry, 2016, 291, 22618-22629.	1.6	96
33	On the interaction of α-crystallin with unfolded proteins. BBA - Proteins and Proteomics, 1995, 1252, 251-260.	2.1	95
34	Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1481-1485.	1.1	95
35	The Molecular Chaperone, α-Crystallin, Inhibits Amyloid Formation by Apolipoprotein C-II. Journal of Biological Chemistry, 2001, 276, 33755-33761.	1.6	93
36	Characterisation of Amyloid Fibril Formation by Small Heat-shock Chaperone Proteins Human αA-, αB- and R120G αB-Crystallins. Journal of Molecular Biology, 2007, 372, 470-484.	2.0	93

#	Article	IF	CITATIONS
37	Mildly Acidic pH Activates the Extracellular Molecular Chaperone Clusterin. Journal of Biological Chemistry, 2002, 277, 39532-39540.	1.6	92
38	Structural alterations of alpha-crystallin during its chaperone action. FEBS Journal, 1998, 258, 170-183.	0.2	91
39	R2P after Libya and Syria: Engaging Emerging Powers. Washington Quarterly, 2013, 36, 61-76.	0.6	90
40	Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata. FEBS Journal, 2000, 267, 1894-1908.	0.2	88
41	NMR spectroscopy of α-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. International Journal of Biological Macromolecules, 1998, 22, 197-209.	3.6	87
42	The mammalian small heat-shock protein Hsp20 forms dimers and is a poor chaperone. FEBS Journal, 1998, 258, 1014-1021.	0.2	86
43	The molecular chaperone α-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of α-lactalbumin. Biochemical Journal, 2001, 354, 79-87.	1.7	82
44	R120G αB-crystallin promotes the unfolding of reduced α-lactalbumin and is inherently unstable. FEBS Journal, 2005, 272, 711-724.	2.2	78
45	α-Crystallin: molecular chaperone and protein surfactant. BBA - Proteins and Proteomics, 1994, 1204, 195-206.	2.1	77
46	Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10424-10429.	3.3	77
47	Dissociation from the Oligomeric State Is the Rate-limiting Step in Fibril Formation by κ-Casein. Journal of Biological Chemistry, 2008, 283, 9012-9022.	1.6	76
48	Amyloid-β Oligomers are Sequestered by both Intracellular and Extracellular Chaperones. Biochemistry, 2012, 51, 9270-9276.	1.2	75
49	Single Molecule Characterization of the Interactions between Amyloid-Î ² Peptides and the Membranes of Hippocampal Cells. Journal of the American Chemical Society, 2013, 135, 1491-1498.	6.6	75
50	Host defence peptides from the skin glands of the Australian Blue Mountains tree-frog Litoria citropa . Solution structure of the antibacterial peptide citropin 1.1. FEBS Journal, 1999, 265, 627-637.	0.2	74
51	Age-related Changes in Bovine α-crystallin and High-molecular-weight Protein. Experimental Eye Research, 1996, 63, 639-647.	1.2	73
52	nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, citropin 1.1 and synthetic modifications. The solution structure of a modified citropin 1.1. FEBS Journal, 2003, 270, 1141-1153.	0.2	72
53	Oxidation Products of 3-Hydroxykynurenine Bind to Lens Proteins: Relevance for Nuclear Cataract. Experimental Eye Research, 1997, 64, 727-735.	1.2	70
54	Preventing α-synuclein aggregation: The role of the small heat-shock molecular chaperone proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1830-1843.	1.8	70

#	Article	IF	CITATIONS
55	Identification of Glutathionyl-3-hydroxykynurenine Glucoside as a Novel Fluorophore Associated with Aging of the Human Lens. Journal of Biological Chemistry, 1999, 274, 20847-20854.	1.6	68
56	Investigating the Importance of the Flexible Hinge in Caerin 1.1:  Solution Structures and Activity of Two Synthetically Modified Caerin Peptides. Biochemistry, 2004, 43, 937-944.	1.2	68
57	Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataract. BBA - Proteins and Proteomics, 2000, 1476, 265-278.	2.1	67
58	Evidence That Clusterin Has Discrete Chaperone and Ligand Binding Sitesâ€. Biochemistry, 2002, 41, 282-291.	1.2	67
59	Unraveling the mysteries of protein folding and misfolding. IUBMB Life, 2008, 60, 769-774.	1.5	67
60	1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids. FEBS Letters, 1995, 369, 305-310.	1.3	63
61	Monitoring Early-Stage Protein Aggregation by an Aggregation-Induced Emission Fluorogen. Analytical Chemistry, 2017, 89, 9322-9329.	3.2	63
62	Darwinian transformation of a â€~scarcely nutritious fluid' into milk. Journal of Evolutionary Biology, 2012, 25, 1253-1263.	0.8	61
63	Probing the structure and interactions of crystallin proteins by NMR spectroscopy. Progress in Retinal and Eye Research, 1999, 18, 431-462.	7.3	60
64	Measurement of amyloid formation by turbidity assay—seeing through the cloud. Biophysical Reviews, 2016, 8, 445-471.	1.5	60
65	The molecular chaperone α-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of α-lactalbumin. Biochemical Journal, 2001, 354, 79.	1.7	58
66	Monitoring the prevention of amyloid fibril formation by α rystallin. FEBS Journal, 2007, 274, 6290-6304.	2.2	58
67	Structural characterization of piperidine alkaloids from Pandanus amaryllifolius by inverse-detected 2D NMR techniques. Phytochemistry, 1993, 34, 1159-1163.	1.4	57
68	A new UV-filter compound in human lenses. FEBS Letters, 1994, 348, 173-176.	1.3	57
69	αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by κ-casein and the amyloid-β peptide. Cell Stress and Chaperones, 2010, 15, 1013-1026.	1.2	57
70	How representative are <scp>brics</scp> ?. Third World Quarterly, 2014, 35, 1791-1808.	1.3	57
71	The effect of small molecules in modulating the chaperone activity of αBâ€crystallin against ordered and disordered protein aggregation. FEBS Journal, 2008, 275, 935-947.	2.2	56
72	A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, î±A- and î±B-crystallin. Experimental Eye Research, 2010, 91, 691-699.	1.2	56

#	Article	IF	CITATIONS
73	The chaperone action of bovine milk αS1- and αS2-caseins and their associated form αS-casein. Archives of Biochemistry and Biophysics, 2011, 510, 42-52.	1.4	56
74	An investigation into the stability of α-crystallin by NMR spectroscopy; evidence for a two-domain structure. BBA - Proteins and Proteomics, 1993, 1164, 22-28.	2.1	53
75	Structural differences between bovine A1 and A2 \hat{l}^2 -casein alter micelle self-assembly and influence molecular chaperone activity. Journal of Dairy Science, 2015, 98, 2172-2182.	1.4	53
76	Protein nanostructures in food – Should we be worried?. Trends in Food Science and Technology, 2014, 37, 42-50.	7.8	51
77	Casein structures in the context of unfolded proteins. International Dairy Journal, 2015, 46, 2-11.	1.5	51
78	The dissociated form of κ-casein is the precursor to its amyloid fibril formation. Biochemical Journal, 2010, 429, 251-260.	1.7	49
79	Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions. Analytical Biochemistry, 2016, 498, 78-94.	1.1	48
80	Avoiding the oligomeric state: αBâ€crystallin inhibits fragmentation and induces dissociation of apolipoprotein Câ€l amyloid fibrils. FASEB Journal, 2013, 27, 1214-1222.	0.2	47
81	Elucidation of a Novel Polypeptide Cross-Link Involving 3-Hydroxykynurenine. Biochemistry, 1999, 38, 11455-11464.	1.2	45
82	The Quaternary Organization and Dynamics of the Molecular Chaperone HSP26 Are Thermally Regulated. Chemistry and Biology, 2010, 17, 1008-1017.	6.2	45
83	The functional roles of the unstructured N- and C-terminal regions in $\hat{1}\pm B$ -crystallin and other mammalian small heat-shock proteins. Cell Stress and Chaperones, 2017, 22, 627-638.	1.2	45
84	The Amyloid Fibrilâ€Forming Properties of the Amphibian Antimicrobial Peptide Uperinâ€3.5. ChemBioChem, 2016, 17, 239-246.	1.3	44
85	Site-Directed Mutations in the C-Terminal Extension of Human αB-Crystallin Affect Chaperone Function and Block Amyloid Fibril Formation. PLoS ONE, 2007, 2, e1046.	1.1	44
86	Assignment of proton NMR resonances of histidine and other aromatic residues in met-, cyano-, oxy-, and (carbon monoxy)myoglobins. Biochemistry, 1984, 23, 4890-4905.	1.2	42
87	A high resolution 1 H NMR study of the solution structure of human epidermal growth factor. FEBS Letters, 1986, 205, 77-81.	1.3	42
88	Decreased heat stability and increased chaperone requirement of modified human betaB1-crystallins. Molecular Vision, 2002, 8, 359-66.	1.1	42
89	The Selective Inhibition of Serpin Aggregation by the Molecular Chaperone, α-Crystallin, Indicates a Nucleation-dependent Specificity. Journal of Biological Chemistry, 2003, 278, 48644-48650.	1.6	40
90	NMR identification of a partial helical conformation for bombesin in solution. FEBS Journal, 1990, 187, 645-650.	0.2	39

#	Article	IF	CITATIONS
91	Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins. Accounts of Chemical Research, 2018, 51, 745-752.	7.6	39
92	Intracellular Protein Unfolding and Aggregation: The Role of Small Heat-Shock Chaperone Proteins. Australian Journal of Chemistry, 2003, 56, 357.	0.5	38
93	Dephosphorylation of α _s - and β-Caseins and Its Effect on Chaperone Activity: A Structural and Functional Investigation. Journal of Agricultural and Food Chemistry, 2009, 57, 5956-5964.	2.4	38
94	A multiâ€pathway perspective on protein aggregation: Implications for control of the rate and extent of amyloid formation. FEBS Letters, 2015, 589, 672-679.	1.3	38
95	Terminal Regions Confer Plasticity to the Tetrameric Assembly of Human HspB2 and HspB3. Journal of Molecular Biology, 2018, 430, 3297-3310.	2.0	37
96	The conformation of bombesin in solution as determined by two-dimensional 1H-NMR techniques. FEBS Journal, 1987, 168, 193-199.	0.2	35
97	The elusive role of the N-terminal extension of βA3- and βAl-crystallin. Protein Engineering, Design and Selection, 1996, 9, 1021-1028.	1.0	35
98	Polypeptide Modification and Cross-Linking by Oxidized 3-Hydroxykynurenineâ€. Biochemistry, 2000, 39, 16176-16184.	1.2	35
99	The Structure and Stability of the Disulfide-Linked γS-Crystallin Dimer Provide Insight into Oxidation Products Associated with Lens Cataract Formation. Journal of Molecular Biology, 2019, 431, 483-497.	2.0	35
100	The small heat-shock chaperone protein, α-crystallin, does not recognise stable molten globule states of cytosolic proteins. BBA - Proteins and Proteomics, 2000, 1481, 175-188.	2.1	34
101	Amyloid aggregation and membrane activity of the antimicrobial peptide uperin 3.5. Peptide Science, 2018, 110, e24052.	1.0	34
102	The solution structure of uperin 3.6, an antibiotic peptide from the granular dorsal glands of the Australian toadlet, Uperoleia mjobergii. Chemical Biology and Drug Design, 1999, 54, 137-145.	1.2	32
103	Monitoring the Interaction between β2-Microglobulin and the Molecular Chaperone αB-crystallin by NMR and Mass Spectrometry. Journal of Biological Chemistry, 2013, 288, 17844-17858.	1.6	32
104	1H Nuclear magnetic resonance studies of an integral membrane protein: Subunit c of the F1F0 ATP synthase. Journal of Molecular Biology, 1987, 193, 759-774.	2.0	31
105	1H-NMR spectroscopy of bovine lens beta-crystallin. The role of the betaB2-crystallin C-terminal extension in aggregation. FEBS Journal, 1993, 213, 321-328.	0.2	31
106	Model for amorphous aggregation processes. Physical Review E, 2009, 80, 051907.	0.8	31
107	Coaggregation of κâ€Casein and βâ€Lactoglobulin Produces Morphologically Distinct Amyloid Fibrils. Small, 2017, 13, 1603591.	5.2	31
108	The multifaceted nature of αB-crystallin. Cell Stress and Chaperones, 2020, 25, 639-654.	1.2	31

#	Article	IF	CITATIONS
109	Supramolecular Order within the Lens: 1H NMR Spectroscopic Evidence for Specific Crystallin-Crystallin Interactions. Experimental Eye Research, 1994, 59, 607-616.	1.2	30
110	A spectroscopic study of glycated bovine α-crystallin: investigation of flexibility of the C-terminal extension, chaperone activity and evidence for diglycation. BBA - Proteins and Proteomics, 1997, 1343, 299-315.	2.1	30
111	Probing the disulfide folding pathway of insulin-like growth factor-I. , 1999, 62, 693-703.		30
112	1H-NMR spectroscopy of betaB2-crystallin from bovine eye lens. Conformation of the N- and C-terminal extensions. FEBS Journal, 1993, 213, 313-320.	0.2	29
113	A radish seed antifungal peptide with a high amyloid fibril-forming propensity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1615-1623.	1.1	29
114	Formation of βA3/βB2-crystallin mixed complexes: involvement of N- and C-terminal extensions. BBA - Proteins and Proteomics, 1999, 1432, 286-292.	2.1	28
115	NMR spectroscopy of 14-3-3ζ reveals a flexible C-terminal extension: differentiation of the chaperone and phosphoserine-binding activities of 14-3-3ζ. Biochemical Journal, 2011, 437, 493-503.	1.7	28
116	Methionine Oxidation Enhances κ-Casein Amyloid Fibril Formation. Journal of Agricultural and Food Chemistry, 2012, 60, 4144-4155.	2.4	28
117	Deamidation of N76 in human γS-crystallin promotes dimer formation. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 315-324.	1.1	28
118	Structural comparison between retro-inverso and parent peptides: Molecular basis for the biological activity of a retro-inverso analogue of the immunodominant fragment of VP1 coat protein from foot-and-mouth disease virus. , 1997, 41, 569-590.		27
119	Glutamic acid residues in the Câ€ŧerminal extension of small heat shock protein 25 are critical for structural and functional integrity. FEBS Journal, 2008, 275, 5885-5898.	2.2	27
120	Carboxymethylated-κ-casein: A convenient tool for the identification of polyphenolic inhibitors of amyloid fibril formation. Bioorganic and Medicinal Chemistry, 2010, 18, 222-228.	1.4	26
121	The chaperone activity of αâ€synuclein: Utilizing deletion mutants to map its interaction with target proteins. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1316-1325.	1.5	26
122	The Kinetics of Amyloid Fibrillar Aggregation of Uperin 3.5 Is Directed by the Peptide's Secondary Structure. Biochemistry, 2019, 58, 3656-3668.	1.2	26
123	Ion Mobility Mass Spectrometry Studies of the Inhibition of Alpha Synuclein Amyloid Fibril Formation by (-)-Epigallocatechin-3-Gallate. Australian Journal of Chemistry, 2011, 64, 36.	0.5	25
124	The Nuclear Ban Treaty: Recasting a Normative Framework for Disarmament. Washington Quarterly, 2017, 40, 71-95.	0.6	25
125	Cumulative deamidations of the major lens protein <scp>γS</scp> â€crystallin increase its aggregation during unfolding and oxidation. Protein Science, 2020, 29, 1945-1963.	3.1	25
126	Solution Structure and Backbone Dynamics of Long-[Arg3]insulin-like Growth Factor-I. Journal of Biological Chemistry, 2000, 275, 10009-10015.	1.6	24

#	Article	IF	CITATIONS
127	The effect of dextran on subunit exchange of the molecular chaperone αA-crystallin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 102-111.	1.1	24
128	Sequence characteristics responsible for proteinâ€protein interactions in the intrinsically disordered regions of caseins, amelogenins, and small heatâ€shock proteins. Biopolymers, 2019, 110, e23319.	1.2	23
129	A 1H NMR Spectroscopic Comparison of γs- and γB-crystallins. Experimental Eye Research, 1994, 59, 211-220.	1.2	22
130	Protein nanofibres of defined morphology prepared from mixtures of crude crystallins. International Journal of Nanotechnology, 2009, 6, 258.	0.1	22
131	Hemin as a generic and potent protein misfolding inhibitor. Biochemical and Biophysical Research Communications, 2014, 454, 295-300.	1.0	22
132	Functional Amyloid Protection in the Eye Lens: Retention of α-Crystallin Molecular Chaperone Activity after Modification into Amyloid Fibrils. Biomolecules, 2017, 7, 67.	1.8	22
133	Functional and dysfunctional folding, association and aggregation of caseins. Advances in Protein Chemistry and Structural Biology, 2019, 118, 163-216.	1.0	22
134	NMR studies of the Na+, Mg2+ and Ca2+ complexes of cyclosporin A. Journal of the Chemical Society Chemical Communications, 1992, , 1682.	2.0	21
135	A Spectroscopic Marker for Structural Transitions Associated with Amyloid-β Aggregation. Biochemistry, 2020, 59, 1813-1822.	1.2	20
136	The interaction of unfolding α-lactalbumin and malate dehydrogenase with the molecular chaperone αB-crystallin: a light and X-ray scattering investigation. Molecular Vision, 2010, 16, 2446-56.	1.1	20
137	Quantitative multivalent binding model of the structure, size distribution and composition of the casein micelles of cow milk. International Dairy Journal, 2022, 126, 105292.	1.5	19
138	Identification of 3-hydroxykynurenine as the lens pigment in the gourami Trichogaster trichopterus. Experimental Eye Research, 1992, 54, 1015-1017.	1.2	18
139	Selective labelling of peptides using (dienyl) iron tricarbonyl cations. Journal of the Chemical Society Chemical Communications, 1993, , 928.	2.0	18
140	The molecular chaperone β-casein prevents amorphous and fibrillar aggregation of α-lactalbumin by stabilisation of dynamic disorder. Biochemical Journal, 2020, 477, 629-643.	1.7	18
141	R2P's â€~Structural' Problems: A Response to Roland Paris. International Peacekeeping, 2015, 22, 11-25.	0.4	17
142	The Effect of Milk Constituents and Crowding Agents on Amyloid Fibril Formation by κ-Casein. Journal of Agricultural and Food Chemistry, 2016, 64, 1335-1343.	2.4	17
143	Role of salt bridges in the dimer interface of 14-3-3ζ in dimer dynamics, N-terminal α-helical order, and molecular chaperone activity. Journal of Biological Chemistry, 2018, 293, 89-99.	1.6	17
144	Conformational differences between various myoglobin ligated states as monitored by proton NMR spectroscopy. Biochemistry, 1984, 23, 4905-4913.	1.2	16

#	Article	IF	CITATIONS
145	Structural Investigation of the Hedamycin:d(ACCGGT)2 Complex by NMR and Restrained Molecular Dynamics. Biochemical and Biophysical Research Communications, 2002, 290, 1602-1608.	1.0	16
146	The solution structures and activity of caerin 1.1 and caerin 1.4 in aqueous trifluoroethanol and dodecylphosphocholine micelles. Biopolymers, 2003, 69, 42-59.	1.2	15
147	SEVI, the semen enhancer of HIV infection along with fragments from its central region, form amyloid fibrils that are toxic to neuronal cells. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1591-1598.	1.1	15
148	Enhanced molecular chaperone activity of the small heatâ€shock protein αBâ€crystallin following covalent immobilization onto a solidâ€phase support. Biopolymers, 2011, 95, 376-389.	1.2	14
149	β-Synuclein: An Enigmatic Protein with Diverse Functionality. Biomolecules, 2022, 12, 142.	1.8	14
150	1H-nmr Assignments of Anonaine and Xylopine Derivatives from Talauma gitingensis. Journal of Natural Products, 1990, 53, 1623-1627.	1.5	13
151	Glucoindole Alkaloids from <i>Ophiorrhiza acuminata</i> . Planta Medica, 1995, 61, 278-280.	0.7	13
152	[2,3] Sigmatropic rearrangement of 1-vinylic tetrahydroisoquinoline N-ylides and N-oxides Tetrahedron Letters, 1993, 34, 3331-3334.	0.7	12
153	Loss of the C-terminal serine residue from bovine βB2-crystallin. Experimental Eye Research, 1995, 60, 465-469.	1.2	12
154	The solution structure of frenatin 3, a neuronal nitric oxide synthase inhibitor from the giant tree frog,Litoria infrafrenata. Biopolymers, 2003, 70, 424-434.	1.2	12
155	The Aggregation of αB-Crystallin under Crowding Conditions Is Prevented by αA-Crystallin: Implications for α-Crystallin Stability and Lens Transparency. Journal of Molecular Biology, 2020, 432, 5593-5613.	2.0	12
156	Metabolic effects of interleukin 3 on 32D cl23 cells analyzed by NMR. Journal of Cellular Physiology, 1987, 133, 351-357.	2.0	11
157	Selective NMR Experiments on Macromolecules: Implementation and Analysis of QUIET-NOESY. Journal of Magnetic Resonance, 1998, 132, 204-213.	1.2	11
158	Recognizing and analyzing variability in amyloid formation kinetics: Simulation and statistical methods. Analytical Biochemistry, 2016, 510, 56-71.	1.1	11
159	A New Furanosesterpene From the Marine Sponge Psammocinia rugosa. Australian Journal of Chemistry, 1989, 42, 1805.	0.5	10
160	Preliminary communication. Journal of Organometallic Chemistry, 1993, 454, C11-C12.	0.8	10
161	The Eye Lens Protein αA-crystallin of the Blind Mole Rat Spalax ehrenbergi: Effects of Altered Functional Constraints. Experimental Eye Research, 2002, 74, 285-291.	1.2	10
162	RNA–LIM: A novel procedure for analyzing protein/single-stranded RNA propensity data with concomitant estimation of interface structure. Analytical Biochemistry, 2015, 472, 52-61.	1.1	10

#	Article	IF	CITATIONS
163	Native disulphide-linked dimers facilitate amyloid fibril formation by bovine milk αS2-casein. Biophysical Chemistry, 2021, 270, 106530.	1.5	10
164	Primary structure of trypsin inhibitors from Sicyos australis. Phytochemistry, 1996, 41, 1265-1274.	1.4	9
165	Caerin 4.1, an Antibiotic Peptide from the Australian Tree Frog, Litoria caerulea. The N.M.RDerived Solution Structure Australian Journal of Chemistry, 2000, 53, 257.	0.5	9
166	The Amyloid Fibril-Forming β-Sheet Regions of Amyloid β and α-Synuclein Preferentially Interact with the Molecular Chaperone 14-3-3ζ. Molecules, 2021, 26, 6120.	1.7	9
167	A two dimensional 1H NMR study of the solution conformation of gastrin releasing peptide. Biochemical and Biophysical Research Communications, 1988, 150, 552-560.	1.0	8
168	FACILE DETECTION OF ORGANOMETALLIC DERIVATIVES OF PEPTIDES USING ELECTROSPRAY MASS SPECTROMETRY. Journal of Coordination Chemistry, 1995, 34, 351-355.	0.8	8
169	Secondary structure determination of15N-labelled human Long-[Arg-3]-insulin-like growth factor 1 by multidimensional NMR spectroscopy. FEBS Letters, 1997, 420, 97-102.	1.3	8
170	Investigation of γE-crystallin target protein binding to bovine lens alpha-crystallin by small-angle neutron scattering. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 392-397.	1.1	8
171	A structural and functional study of Gln147 deamidation in αA-crystallin, a site of modification in human cataract. Experimental Eye Research, 2017, 161, 163-173.	1.2	7
172	The Effect of Oxidized Dopamine on the Structure and Molecular Chaperone Function of the Small Heat-Shock Proteins, αB-Crystallin and Hsp27. International Journal of Molecular Sciences, 2021, 22, 3700.	1.8	7
173	Assignments of meso 1 H NMR resonances in haem proteins by selective deuteriation. FEBS Letters, 1982, 146, 297-301.	1.3	6
174	Letter to the Editor: A response to Horne and Lucey (2017). Journal of Dairy Science, 2017, 100, 5121-5124.	1.4	6
175	The molecular basis of kirromycin(mocimycin) action. A 1H NMR study using deuterated elongation factor Tu Journal of Antibiotics, 1988, 41, 202-206.	1.0	5
176	Solution conformation of bovine lens αâ€and βB2â€crystallin terminal extensions. International Journal of Peptide and Protein Research, 1996, 47, 9-19.	0.1	5
177	Amyloid Fibrils from Readily Available Sources: Milk Casein and Lens Crystallin Proteins. Methods in Molecular Biology, 2013, 996, 103-117.	0.4	5
178	A novel protein distance matrix based on the minimum arc-length between two amino-acid residues on the surface of a globular protein. Biophysical Chemistry, 2014, 190-191, 50-55.	1.5	5
179	Japan and the Nuclear Weapons Prohibition Treaty: The Wrong Side of History, Geography, Legality, Morality, and Humanity. Journal for Peace and Nuclear Disarmament, 2018, 1, 11-31.	0.7	5
180	Are casein micelles extracellular condensates formed by liquidâ€liquid phase separation?. FEBS Letters, 2022, 596, 2072-2085.	1.3	5

#	Article	IF	CITATIONS
181	The Last Bang before a Total Ban: French Nuclear Testing in the Pacific. International Journal, 1996, 51, 466-486.	0.4	4
182	Threats without Enemies, Security without Borders: Environmental Security in East Asia. Journal of East Asian Studies, 2001, 1, 161-189.	0.4	4
183	Protection gaps for civilian victims of political violence. South African Journal of International Affairs, 2013, 20, 321-338.	0.4	4
184	The membrane-active amphibian peptide caerin 1.8 inhibits fibril formation of amyloid β1-42. Peptides, 2015, 73, 1-6.	1.2	4
185	Application of the Double-Mutant Cycle Strategy to Protein Aggregation Reveals Transient Interactions in Amyloid-β Oligomers. Journal of Physical Chemistry B, 2021, 125, 12426-12435.	1.2	4
186	Histidine H-2 n.m.r. resonances of sperm whale oxy-, carbonyl-, and met-myoglobin. Journal of the Chemical Society Chemical Communications, 1981, , 208.	2.0	3
187	NMR spectroscopy of large proteins. Annual Reports on NMR Spectroscopy, 2002, 48, 31-69.	0.7	3
188	Ethics, International Affairs and Western Double Standards. Asia and the Pacific Policy Studies, 2016, 3, 370-377.	0.6	3
189	Dynamism in Molecular Chaperones. Journal of Molecular Biology, 2011, 413, 295-296.	2.0	2
190	Polymorphism in Casein Protein Aggregation and Amyloid Fibril Formation. , 2014, , 323-331.		2
191	Real-time monitoring of amyloid growth in a rigid gel matrix. Analytical Biochemistry, 2016, 511, 13-16.	1.1	2
192	Nuclear Turbulence in the Age of Trump. Diplomacy and Statecraft, 2018, 29, 105-128.	0.0	1
193	Crystallins, cataract, and dynamic lens proteostasis. A commentary on P.W.N. Schmid, N.C.H. Lim, C. Peters, K.C. Back, B. Bourgeois, F. Pirolt, B. Richter, J. Peschek, O. Puk, O.V. Amarie, C. Dalke, M. Haslbeck, S. Weinkauf, T. Madl, J. Graw, and J. Buchner (2021) Imbalances in the eye lens proteome are linked to cataract formation, Nat. Struct. Mol. Biol. 28, 143–151. doi: 10.1038/s41594-020-00543-9. Experimental Eye	1.2	1
194	Research, 2021, 200, 100619. Host-Defense Peptides from the Secretion of the Skin Glands of Frogs and Toads. , 2009, , 333-355.		1
195	Structure-Function Studies on Bombesin and Related Peptides: Biological Effects on Swiss 3T3 Cells and Two-Dimensional1H-NMR Analysis. Annals of the New York Academy of Sciences, 1988, 547, 481-483.	1.8	0
196	Intracellular Protein Unfolding and Aggregation: The Role of Small Heat-Shock Chaperone Proteins ChemInform, 2003, 34, no.	0.1	0
197	Resurgent Asia: diversity in development. International Affairs, 2020, 96, 534-536.	0.6	0
198	Breaking through the Global Politics of Climate Change Policy. Washington Quarterly, 2020, 43, 51-71.	0.6	0