Yanfeng Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3564590/publications.pdf

Version: 2024-02-01

623734 501196 41 816 14 28 citations h-index g-index papers 41 41 41 1386 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution. Physical Review B, 2016, 93, .	3.2	95
2	Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9663-9668.	8.0	93
3	The strain effect on superconductivity in phosphorene: a first-principles prediction. New Journal of Physics, 2015, 17, 035008.	2.9	72
4	Effect of doping and strain modulations on electron transport in monolayerMoS2. Physical Review B, 2014, 90, .	3.2	56
5	Phonon-mediated superconductivity in silicene predicted by first-principles density functional calculations. Europhysics Letters, 2013, 104, 36001.	2.0	55
6	Hole-doped room-temperature superconductivity in H3S1-xZ (Z=C, Si). Materials Today Physics, 2020, 15, 100330.	6.0	53
7	High-temperature ferromagnetic semiconductors: Janus monolayer vanadium trihalides. Physical Review B, 2020, 101, .	3.2	45
8	Type-I and type-II nodal lines coexistence in the antiferromagnetic monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CrAs</mml:mi><mml:mn>2<td>:m8.2<td>ml:ɪɜʊsub></td></td></mml:mn></mml:msub></mml:math>	:m 8.2 <td>ml:ɪɜʊsub></td>	ml:ɪɜʊsub>
9	Pressure-induced phase transitions and superconductivity in a quasi–1-dimensional topological crystalline insulator α-Bi ₄ Br ₄ . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17696-17700.	7.1	36
10	Phonon and electron transport in Janus monolayers based on InSe. Journal of Physics Condensed Matter, 2019, 31, 435501.	1.8	27
11	Two dimensional superconductors in electrides. New Journal of Physics, 2017, 19, 123020.	2.9	22
12	Two dimensional ferromagnetic semiconductor: monolayer CrGeS ₃ . Journal of Physics Condensed Matter, 2020, 32, 015701.	1.8	20
13	Large thermoelectric power factor of high-mobility transition-metal dichalcogenides with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:rphase. .<="" 2,="" 2020,="" physical="" research,="" review="" td=""><td>ni:&T6/mn</td><td>ո<mark>l:mi</mark>s <mml<mark>:mi</mml<mark></td></mml:rphase.></mml:msup></mml:mrow></mml:math>	ni :&T6 /mn	ո <mark>l:mi</mark> s <mml<mark>:mi</mml<mark>
14	Strong phonon anharmonicity and low thermal conductivity of monolayer tin oxides driven by lone-pair electrons. Applied Physics Letters, 2019, 114, .	3.3	16
15	Phonon-limited electronic transport of two-dimensional ultrawide bandgap material h-BeO. Applied Physics Letters, 2020, 117, 123101.	3.3	13
16	Direct and indirect optical absorptions of cubic BAs and BSb. Optics Express, 2020, 28, 238.	3.4	13
17	Room-temperature superconductivity in boron- and nitrogen-doped lanthanum superhydride. Physical Review B, 2021, 104, .	3.2	13
18	A new kind of 2D topological insulators BiCN with a giant gap and its substrate effects. Scientific Reports, 2016, 6, 30003.	3.3	10

#	Article	IF	CITATIONS
19	Emergence of intrinsic superconductivity in monolayer W2N3. Physical Review B, 2021, 103, .	3.2	10
20	Superconductivity in the two-dimensional nonbenzenoid biphenylene sheet with Dirac cone. 2D Materials, 2022, 9, 015035.	4.4	10
21	Tunable Electronic Structures in Wrinkled 2D Transitionâ€Metalâ€Trichalcogenide (TMT) HfTe ₃ Films. Advanced Electronic Materials, 2016, 2, 1600324.	5.1	9
22	Magnetic diversity in stable and metastable structures of CrAs. Physical Review B, 2017, 96, .	3.2	9
23	Strain-tunable magnetic order and electronic structure in 2D CrAsS4. Journal of Magnetism and Magnetic Materials, 2020, 497, 165941.	2.3	8
24	Pressure-induced novel nitrogen-rich aluminum nitrides: AlN6, Al2N7 and AlN7 with polymeric nitrogen chains and rings. Physical Chemistry Chemical Physics, 2021, 23, 12350-12359.	2.8	8
25	Superconductivity in graphite-diamond hybrid. Materials Today Physics, 2022, 23, 100630.	6.0	7
26	Superconductivity in Li-intercalated bilayer arsenene and hole-doped monolayer arsenene: a first-principles prediction. Journal of Physics Condensed Matter, 2018, 30, 245701.	1.8	6
27	Modulation of heat transport in two-dimensional group-III chalcogenides. Journal Physics D: Applied Physics, 2020, 53, 185102.	2.8	6
28	Diverse magnetism in stable and metastable structures of CrTe. Frontiers of Physics, 2021, 16, 1.	5.0	6
29	Ternary FePSe 3 Atomic Layers with Competitive Temperature Coefficient of Resistance for Uncooled Infrared Bolometers. Advanced Materials Interfaces, 2021, 8, 2100491.	3.7	6
30	Robust intrinsic half-metallic ferromagnetism in stable 2D single-layer MnAsS ₄ . Journal of Physics Condensed Matter, 2020, 32, 385803.	1.8	6
31	Electronic, magnetic, and optical properties of Mn-doped GaSb: A first-principles study. Physica B: Condensed Matter, 2019, 572, 225-229.	2.7	5
32	Hexagonal MASnI3 exhibiting strong absorption of ultraviolet photons. Applied Physics Letters, 2019, 114, .	3.3	5
33	Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide*. Chinese Physics B, 2019, 28, 077104.	1.4	4
34	Large Magnetic Anisotropy Energy and Robust Halfâ€Metallic Ferromagnetism in 2D MnXSe ₄ (X = As, Sb). Annalen Der Physik, 2020, 532, 2000365.	2.4	4
35	Strain tunable intrinsic ferromagnetic in 2D square CrBr ₂ . AIP Advances, 2021, 11, 115220.	1.3	4
36	Prediction of Chalcogenâ€Doped VCl 3 Monolayers as 2D Ferromagnetic Semiconductors with Enhanced Optical Absorption. Annalen Der Physik, 2021, 533, 2100064.	2.4	3

3

YANFENG GE

#	Article	IF	CITATIONS
37	Theoretical study of the structure and magnetism of Galâ^xvVxSb compounds for spintronic applications. Applied Physics Letters, 2020, 116, .	3.3	2
38	A New Type of Largeâ€Gap Quantum Spin Hall Insulator Material ZrSe ₅ . Physica Status Solidi (B): Basic Research, 2021, 258, 2100256.	1.5	2
39	High-performance electronic transport in the plane of 3D type-II Dirac semimetals. Journal of Physics Condensed Matter, 2017, 29, 415701.	1.8	1
40	Tuning of n-type doping by intercalation of group V and VII atoms in SnS2 bilayer. Materials Science in Semiconductor Processing, 2022, 145, 106649.	4.0	1
41	A Firstâ€Principles Study of the Structural, Magnetic, Optical Properties and Doping Effect in Chromium Arsenide. Physica Status Solidi (B): Basic Research, 0, , 2200062.	1.5	0