J Acevedo Davila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3563440/publications.pdf

Version: 2024-02-01

840119 887659 35 321 11 17 citations h-index g-index papers 35 35 35 440 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Laser deposition of bioactive coatings by in situ synthesis of pseudowollastonite on Ti6Al4V alloy. Optics and Laser Technology, 2021, 134, 106586.	2.2	3
2	Tribological performance of Ti nanolayer coating post plasma nitriding treatment on Co based alloy. Wear, 2021, 477, 203798.	1.5	5
3	Tribological and microstructural characterization of laser microtextured CoCr alloy tested against UHMWPE for biomedical applications. Wear, 2021, 477, 203819.	1.5	10
4	Characterization of a C-Based Coating Applied on an AA6063 Alloy and Developed by a Novel Electrochemical Synthesis Route. Coatings, 2020, 10, 145.	1.2	2
5	Improved Mechanical Properties, Wear and Corrosion Resistance of 316L Steel by Homogeneous Chromium Nitride Layer Synthesis Using Plasma Nitriding. Journal of Materials Engineering and Performance, 2020, 29, 877-889.	1.2	23
6	Duplex plasma treatment of AISI D2 tool steel by combining plasma nitriding (with and without white) Tj ETQq0	0 0 rgBT /	Overlock 10 T
7	Growth of a graphenic-Co composite coating on type-304 stainless steel. Vacuum, 2019, 163, 324-327.	1.6	4
8	A Hybrid Plasma Treatment of H13 Tool Steel by Combining Plasma Nitriding and Post-Oxidation. Journal of Materials Engineering and Performance, 2018, 27, 6118-6126.	1.2	12
9	Tribological study of a thin TiO2 nanolayer coating on 316L steel. Wear, 2017, 376-377, 1702-1706.	1.5	7
10	Cobalt-based PTA coatings, effects of addition of TiC nanoparticles. Vacuum, 2017, 143, 14-22.	1.6	17
11	Effect of Laser Welding on the Mechanical Properties AISI 1018 Steel. MRS Advances, 2017, 2, 4031-4039.	0.5	3
12	Effects of tic Nanostructured Overlays on D2 Steels by PTA. MRS Advances, 2017, 2, 4041-4047.	0.5	1
13	Thermo-mechanic and Microstructural Analysis of an Underwater Welding Joint. Soldagem E Inspecao, 2016, 21, 156-164.	0.6	7
14	Aging Thermal Treatment in the Inconel 725 Brazed Incorporating Tungsten Nanoparticles. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	3
15	The Role of Friction Stir Processing (FSP) Parameters on TiC Reinforced Surface Al7075-T651 Aluminum Alloy. Soldagem E Inspecao, 2016, 21, 508-516.	0.6	17
16	Comportamiento Tribol \tilde{A}^3 gico y Microestructural en Recubrimientos Aplicados por GTAW y HVOF (Proceso T \tilde{A} ©rmico de Espreado) y Usado en Recuperaci \tilde{A}^3 n de Aceros Grado Herramienta AISI/SAE D2. Soldagem E Inspecao, 2016, 21, 228-236.	0.6	0
17	Efecto de la Profundidad sobre la Soldabilidad de Aceros FerrÃticos en Ambientes Simulados Unidos por Soldadura Húmeda. Soldagem E Inspecao, 2016, 21, 126-136.	0.6	0
18	304 stainless steel brazing incorporating tungsten nanoparticles. Journal of Materials Processing Technology, 2015, 215, 1-5.	3.1	15

#	Article	IF	CITATIONS
19	Magnesium Removal from an Aluminum A-332 Molten Alloy Using Enriched Zeolite with Nanoparticles of SiO ₂ . Advances in Materials Science and Engineering, 2014, 2014, 1-7.	1.0	0
20	Microstructural effects on the wear behavior of a biomedical as ast Coâ€27Crâ€5Moâ€0.25C alloy exposed to pulsed laser melting. Journal of Biomedical Materials Research - Part A, 2014, 102, 2008-2016.	2.1	6
21	Effects of Silicon Nanoparticles on the Transient Liquid Phase Bonding of 304 Stainless Steel. Journal of Materials Science and Technology, 2014, 30, 259-262.	5.6	20
22	Automation and parameters optimization in production line: a case of study. International Journal of Advanced Manufacturing Technology, 2013, 66, 1315-1318.	1.5	7
23	Particle Size of Gamma Prime as a Result of Vacuum Heat Treatment of INCONEL 738 Super Alloy. Journal of Materials Engineering and Performance, 2013, 22, 1143-1148.	1.2	7
24	Corrigendum to "Development of aluminum hydroxide in Al–Mg–Si/SiCp infiltrated composites exposed to long term moist air―[Ceram. Int. 37 (2011) 2719–2722]. Ceramics International, 2012, 38, 887.	2.3	1
25	Analysis and evaluation in a welding process applying a Redesigned Radial Basis Function. Expert Systems With Applications, 2012, 39, 9669-9675.	4.4	13
26	Development of aluminum hydroxides in Al–Mg–Si/SiCp in infiltrated composites exposed to moist air. Ceramics International, 2011, 37, 2719-2722.	2.3	30
27	A Radial Basis Function Redesigned for Predicting a Welding Process. Lecture Notes in Computer Science, 2010, , 257-268.	1.0	1
28	Why Unary Quality Indicators Are Not Inferior to Binary Quality Indicators. Lecture Notes in Computer Science, 2009, , 646-657.	1.0	2
29	Study of cross-linking of gelatin by ethylene glycol diglycidyl ether. Materials Letters, 2008, 62, 3656-3658.	1.3	51
30	Compression Strength Prediction of Mixtures Concrete with Scrap Tire with Neural Network Approach. , 2008, , .		0
31	Corrosion prediction and annual maintenance improvement of concrete structural components using neural networks., 2007,,.		1
32	Tezontle aggregate substitute optimization in building blocks mixture , 2007, , .		3
33	SÃntesis quÃmica de carbonato-hidroxiapatita similar al hueso a partir de cascarón de huevo de gallina y su caracterización. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2007, 46, 225-231.	0.9	17
34	Compressive Strength Prediction of Building Blocks from Lightweight Raw Materials: A Neural Network Approach., 2006,,.		3
35	Analysis of Weld Bead Parameters of Overlay Deposited on D2 Steel Components by Plasma Transferred Arc (PTA) Process. Materials Science Forum, 0, 755, 39-45.	0.3	7