Emilie Roncali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3563359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Radioembolization Dosimetry with Total-Body ⁹⁰ Y PET. Journal of Nuclear Medicine, 2022, 63, 1101-1107.	2.8	12
2	Time Resolution Studies of Thallium Based Cherenkov Semiconductors. Frontiers in Physics, 2022, 10, .	1.0	9
3	The Impact of Injection Distance to Bifurcations on Yttrium-90 Distribution inÂLiver Cancer Radioembolization. Journal of Vascular and Interventional Radiology, 2022, 33, 668-677.e1.	0.2	3
4	The Accuracy of Cerenkov Photons Simulation in Geant4/Gate Depends on the Parameterization of Primary Electron Propagation. Frontiers in Physics, 2022, 10, .	1.0	8
5	Overview of the First NRG Oncology–National Cancer Institute Workshop on Dosimetry of Systemic Radiopharmaceutical Therapy. Journal of Nuclear Medicine, 2021, 62, 1133-1139.	2.8	5
6	Study of ÄŒerenkov Light Emission in the Semiconductors TlBr and TlCl for TOF-PET. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 630-637.	2.7	25
7	Toward Individualized Voxel-Level Dosimetry for Radiopharmaceutical Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 109, 902-904.	0.4	5
8	Quantitative PET in the 2020s: a roadmap. Physics in Medicine and Biology, 2021, 66, 06RM01.	1.6	36
9	Technical Note: Standalone application to generate custom reflectance Lookâ€Up Table for advanced optical Monte Carlo simulation in GATE/Geant4. Medical Physics, 2021, 48, 2800-2808.	1.6	10
10	Advanced Monte Carlo simulations of emission tomography imaging systems with GATE. Physics in Medicine and Biology, 2021, 66, 10TR03.	1.6	82
11	Realistic boundary conditions in SimVascular through inlet catheter modeling. BMC Research Notes, 2021, 14, 215.	0.6	4
12	Optimization of scintillator–reflector optical interfaces for the LUT Davis model. Medical Physics, 2021, 48, 4883-4899.	1.6	5
13	Multiscale Computational Fluid Dynamics Modeling for Personalized Liver Cancer Radioembolization Dosimetry. Journal of Biomechanical Engineering, 2021, 143, .	0.6	14
14	Integration of polarization in the LUTDavis model for optical Monte Carlo simulation in radiation detectors. Physics in Medicine and Biology, 2021, 66, .	1.6	3
15	Computational Modeling of the Liver Arterial Blood Flow for Microsphere Therapy: Effect of Boundary Conditions. Bioengineering, 2020, 7, 64.	1.6	14
16	Estimation of Yttrium-90 Distribution in Liver Radioembolization using Computational Fluid Dynamics and Deep Neural Networks. , 2020, 2020, 4974-4977.		2
17	Personalized Dosimetry for Liver Cancer Y-90 Radioembolization Using Computational Fluid Dynamics and Monte Carlo Simulation. Annals of Biomedical Engineering, 2020, 48, 1499-1510.	1.3	26
18	Cerenkov light transport in scintillation crystals explained: realistic simulation with GATE. Biomedical Physics and Engineering Express, 2019, 5, 035033.	0.6	22

Emilie Roncali

#	Article	IF	CITATIONS
19	Dual-ended readout of bismuth germanate to improve timing resolution in time-of-flight PET. Physics in Medicine and Biology, 2019, 64, 105007.	1.6	31
20	An integrated model of scintillator-reflector properties for advanced simulations of optical transport. Physics in Medicine and Biology, 2017, 62, 4811-4830.	1.6	48
21	Advanced optical simulation of scintillation detectors in GATE V8.0: first implementation of a reflectance model based on measured data. Physics in Medicine and Biology, 2017, 62, L1-L8.	1.6	39
22	Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging. Physics in Medicine and Biology, 2017, 62, R207-R235.	1.6	24
23	Improving Depth, Energy and Timing Estimation in PET Detectors with Deconvolution and Maximum Likelihood Pulse Shape Discrimination. IEEE Transactions on Medical Imaging, 2016, 35, 2436-2446.	5.4	8
24	Reaching 200-ps timing resolution in a time-of-flight and depth-of-interaction positron emission tomography detector using phosphor-coated crystals and high-density silicon photomultipliers. Journal of Medical Imaging, 2016, 3, 043501.	0.8	23
25	A combined timeâ€ofâ€flight and depthâ€ofâ€interaction detector for totalâ€body positron emission tomography. Medical Physics, 2016, 43, 939-950.	1.6	43
26	Evaluation of Matrix9 silicon photomultiplier array for smallâ€animal PET. Medical Physics, 2015, 42, 585-599.	1.6	21
27	Optimizing light transport in scintillation crystals for time-of-flight PET: an experimental and optical Monte Carlo simulation study. Biomedical Optics Express, 2015, 6, 2220.	1.5	34
28	Timing properties of phosphor-coated polished LSO crystals. Physics in Medicine and Biology, 2014, 59, N139-N151.	1.6	7
29	Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation. Physics in Medicine and Biology, 2014, 59, 2023-2039.	1.6	18
30	Design Considerations for DOI-encoding PET Detectors Using Phosphor-Coated Crystals. IEEE Transactions on Nuclear Science, 2014, 61, 67-73.	1.2	13
31	Simulation of light transport in scintillators based on 3D characterization of crystal surfaces. Physics in Medicine and Biology, 2013, 58, 2185-2198.	1.6	55
32	Pulse shape discrimination and classification methods for continuous depth of interaction encoding PET detectors. Physics in Medicine and Biology, 2012, 57, 6571-6585.	1.6	23
33	Application of Silicon Photomultipliers to Positron Emission Tomography. Annals of Biomedical Engineering, 2011, 39, 1358-1377.	1.3	197
34	New device for real-time bioluminescence imaging in moving rodents. Journal of Biomedical Optics, 2008, 13, 054035.	1.4	33
35	Non-Invasive In Vivo Imaging of Calcium Signaling in Mice. PLoS ONE, 2007, 2, e974.	1.1	81