List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3563243/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemistry of glass-ionomer cements: a review. Biomaterials, 1998, 19, 485-494.	5.7	342
2	A Review of Glass-Ionomer Cements for Clinical Dentistry. Journal of Functional Biomaterials, 2016, 7, 16.	1.8	332
3	Titanium Alloys for Dental Implants: A Review. Prosthesis, 2020, 2, 100-116.	1.1	218
4	The biocompatibility of resin-modified glass-ionomer cements for dentistry. Dental Materials, 2008, 24, 1702-1708.	1.6	119
5	Polyacid-modified composite resins ("compomersâ€) and their use in clinical dentistry. Dental Materials, 2007, 23, 615-622.	1.6	93
6	Buffering and ion-release by a glass-ionomer cement under near-neutral and acidic conditions. Biomaterials, 2002, 23, 2783-2788.	5.7	90
7	The biocompatibility of glass-poly(alkenoate) (Glass-Ionomer) cements: A review. Journal of Biomaterials Science, Polymer Edition, 1991, 2, 277-285.	1.9	87
8	Enhancing the Mechanical Properties of Glass-Ionomer Dental Cements: A Review. Materials, 2020, 13, 2510.	1.3	66
9	Studies on the setting chemistry of glass-ionomer cements. Clinical Materials, 1991, 7, 289-293.	0.5	62
10	Adhesive dental materials—A review. International Journal of Adhesion and Adhesives, 1998, 18, 229-236.	1.4	60
11	Adhesion of glass-ionomer cements to teeth: A review. International Journal of Adhesion and Adhesives, 2016, 69, 33-38.	1.4	59
12	lon release by resin-modified glass-ionomer cements into water and lactic acid solutions. Journal of Dentistry, 2006, 34, 539-543.	1.7	56
13	Review Paper: Role of Aluminum in Glass-ionomer Dental Cements and its Biological Effects. Journal of Biomaterials Applications, 2009, 24, 293-308.	1.2	56
14	Enamel alteration following tooth bleaching and remineralization. Journal of Microscopy, 2016, 262, 232-244.	0.8	56
15	Atomic and vibrational origins of mechanical toughness in bioactive cement during setting. Nature Communications, 2015, 6, 8631.	5.8	55
16	Maturation processes in glass-ionomer dental cements. Acta Biomaterialia Odontologica Scandinavica, 2018, 4, 63-71.	4.0	52
17	A preliminary study of the effect of glass-ionomer and related dental cements on the pH of lactic acid storage solutions. Biomaterials, 1999, 20, 155-158.	5.7	48
18	Glass ionomer cements in pediatric dentistry: review of the literature. Pediatric Dentistry (discontinued), 2002, 24, 423-9.	0.4	48

#	Article	IF	CITATIONS
19	The rate of change of pH of lactic acid exposed to glass-ionomer dental cements. Biomaterials, 2000, 21, 1989-1993.	5.7	47
20	Ag+- and Zn2+-exchange kinetics and antimicrobial properties of 11Ã tobermorites. Journal of the European Ceramic Society, 2009, 29, 1109-1117.	2.8	41
21	Effect of denture cleansers on chemical and mechanical behavior of selected soft lining materials. Dental Materials, 2011, 27, 281-290.	1.6	41
22	Remineralization of Demineralized Enamel by Toothpastes: A Scanning Electron Microscopy, Energy Dispersive X-Ray Analysis, and Three-Dimensional Stereo-Micrographic Study. Microscopy and Microanalysis, 2013, 19, 587-595.	0.2	41
23	The Incorporation of Nanoparticles into Conventional Glass-Ionomer Dental Restorative Cements. Microscopy and Microanalysis, 2015, 21, 392-406.	0.2	41
24	Adhesive dental materials and their durability. International Journal of Adhesion and Adhesives, 2000, 20, 11-16.	1.4	38
25	The effect of antimicrobial additives on the properties of dental glass-ionomer cements: a review. Acta Biomaterialia Odontologica Scandinavica, 2019, 5, 9-21.	4.0	36
26	Incorporation of crosslinking agents into poly(vinyl phosphonic acid) as a route to glass–polyalkenoate cements of improved compressive strength. Journal of Materials Chemistry, 1993, 3, 361-365.	6.7	30
27	Ion-release, dissolution and buffering by zinc phosphate dental cements. Journal of Materials Science: Materials in Medicine, 2003, 14, 601-604.	1.7	30
28	Heat transfer properties and thermal cure of glass-ionomer dental cements. Journal of Materials Science: Materials in Medicine, 2015, 26, 249.	1.7	28
29	Positive correlation between fluoride release and acid erosion of restorative glass-ionomer cements. Dental Materials, 2019, 35, 135-143.	1.6	26
30	Physical property investigation of contemporary glass ionomer and resin-modified glass ionomer restorative materials. Clinical Oral Investigations, 2019, 23, 1295-1308.	1.4	25
31	Polymerization behavior of an organophosphorus monomer for use in dental restorative materials. Journal of Applied Polymer Science, 2003, 88, 565-569.	1.3	24
32	The use of organic compounds of phosphorus in clinical dentistry. Biomaterials, 1996, 17, 2023-2030.	5.7	23
33	Assessment of the Impact of the Addition of Nanoparticles on the Properties of Glass–lonomer Cements. Materials, 2020, 13, 276.	1.3	23
34	A preliminary study of experimental polyacid-modified composite resins (â€~compomers') containing vinyl phosphonic acid. Dental Materials, 2005, 21, 491-497.	1.6	22
35	Fluoride release and uptake in enhanced bioactivity glass ionomer cement ("glass carbomerâ,"¢â€) compared with conventional and resin-modified glass ionomer cements. Journal of Applied Oral Science, 2019, 27, e20180230.	0.7	22
36	Thermal behaviour of films of partially neutralized poly(acrylic acid). 1: Influence of metal ions. British Polymer Journal, 1987, 19, 67-72.	0.7	21

#	Article	IF	CITATIONS
37	Marginal adaptation and performance of bioactive dental restorative materials in deciduous and young permanent teeth. Journal of Applied Oral Science, 2008, 16, 1-6.	0.7	21
38	Thermal behaviour of films of partially neutralized poly(acrylic acid). 3: Effect of magnesium and calcium ions. British Polymer Journal, 1988, 20, 97-101.	0.7	19
39	Changes in compressive strength on ageing in glass polyalkenoate (glass-ionomer) cements prepared from acrylic/maleic acid copolymers. Biomaterials, 1997, 18, 59-62.	5.7	18
40	Kinetic studies of the effect of varnish on water loss by glass–ionomer cements. Dental Materials, 2007, 23, 1549-1552.	1.6	18
41	Qualitative assessment of microstructure and Hertzian indentation failure in biocompatible glass ionomer cements. Journal of Materials Science: Materials in Medicine, 2012, 23, 677-685.	1.7	18
42	The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery. Journal of Chemical Education, 2004, 81, 1362.	1.1	17
43	Kinetic studies of water uptake and loss in glass-ionomer cements. Journal of Materials Science: Materials in Medicine, 2008, 19, 1723-1727.	1.7	17
44	Ion migration from fluoride-releasing dental restorative materials into dental hard tissues. Journal of Materials Science: Materials in Medicine, 2012, 23, 1811-1821.	1.7	16
45	Maturation affects fluoride uptake by glass-ionomer dental cements. Dental Materials, 2012, 28, e1-e5.	1.6	16
46	The synthesis and tin-119m Mössbauer spectra of some tetraalkylammonium di- and tri-organohalogenostannate(IV) complexes. Journal of Organometallic Chemistry, 1981, 219, 309-316.	0.8	15
47	The role of the ionomer glass component in polyacid-modified composite resin dental restorative materials. Journal of Materials Science: Materials in Medicine, 2004, 15, 751-754.	1.7	13
48	Shear bond strengths of glass-ionomer cements to sound and to prepared carious dentine. Journal of Materials Science: Materials in Medicine, 2007, 18, 845-849.	1.7	13
49	Ion release by endodontic grade glass-ionomer cement. Journal of Materials Science: Materials in Medicine, 2007, 18, 649-652.	1.7	13
50	Kinetics of ion release from a conventional glass-ionomer cement. Journal of Materials Science: Materials in Medicine, 2021, 32, 30.	1.7	13
51	Glass-ionomer cements in orthopaedic surgery design of laboratory tests. Clinical Materials, 1991, 8, 125-129.	0.5	12
52	Metal salts interaction with acrylic acid-maleic acid copolymer: An infrared spectroscopic study. Journal of Applied Polymer Science, 2000, 78, 1680-1684.	1.3	12
53	A study of cements formed by aqueous lactic acid and aluminosilicate glass. Journal of Materials Science: Materials in Medicine, 2002, 13, 417-419.	1.7	12
54	Fluoride-releasing dental restorative materials: An update. Balkan Journal of Dental Medicine, 2014, 18, 60-69.	0.2	12

JOHN W NICHOLSON

#	Article	IF	CITATIONS
55	Effect of operator skill in determining the physical properties of glass-lonomer cements. Clinical Materials, 1994, 15, 169-172.	0.5	11
56	Aluminium and fluoride release into artificial saliva from dental restoratives placed in teeth. Journal of Materials Science: Materials in Medicine, 2008, 19, 3163-3167.	1.7	11
57	Influence of external energy sources on the dynamic setting process of glass-ionomer cements. Dental Materials, 2019, 35, 450-456.	1.6	11
58	A new route to tetraorganotin compounds. Journal of Organometallic Chemistry, 1982, 233, 169-172.	0.8	10
59	The early history of organotin chemistry. Journal of Chemical Education, 1989, 66, 621.	1.1	10
60	Direct and Transdentinal (Indirect) Antibacterial Activity of Commercially Available Dental Gel Formulations against <i>Streptococcus mutans</i> . Medical Principles and Practice, 2013, 22, 397-401.	1.1	10
61	The effect of trivalent metal nitrates on the properties of dental cements made from poly(acrylic) Tj ETQq1 10.78	4314 rgB ⁻ 1.3	T 60verlock
62	Scanning electron microscopy and energy dispersive X-ray study of a recovered dental implant. Journal of Materials Science: Materials in Medicine, 2006, 17, 277-279.	1.7	9
63	A revised classification for direct tooth-colored restorative materials. Quintessence International, 2009, 40, 691-7.	0.3	9
64	Thermal behaviour of films of partially neutralized poly(acrylic acid). 2: The influence of univalent cations. British Polymer Journal, 1987, 19, 449-452.	0.7	8
65	Polyelectrolyte materials ? reflections on a highly charged topic. Chemical Society Reviews, 1994, 23, 53.	18.7	8
66	Release of sodium fusidate from glass-ionomer dental cement. Journal of Materials Science: Materials in Medicine, 2010, 21, 1997-2000.	1.7	8
67	Adhesion of resin-modified glass-ionomer cements may affect the integrity of tooth structure in the open sandwich technique. Dental Materials, 2014, 30, e301-e305.	1.6	8
68	The effect of petroleum jelly, light-cured varnish and different storage media on the flexural strength of glass ionomer dental cements. Acta Biomaterialia Odontologica Scandinavica, 2016, 2, 55-59.	4.0	8
69	The behaviour of thermoset polymers under fire conditions. Fire and Materials, 1983, 7, 89-95.	0.9	7
70	The Chemistry of Modern Dental Filling Materials. Journal of Chemical Education, 1999, 76, 1497.	1.1	7
71	The effect of temperature and ionic solutes on the fluoride release and recharge of glass-ionomer cements. Dental Materials, 2020, 36, e9-e14.	1.6	7
72	Current trends in biomaterials. Materials Today, 1998, 1, 6-8.	8.3	6

5

3

#	Article	IF	CITATIONS
73	Reflections on the Ethics of Biomaterials Science. New Bioethics, 2013, 19, 54-63.	0.5	6
74	Release of antimicrobial compounds from a zinc oxide-chelate cement. Journal of Oral Science, 2018, 60, 24-28.	0.7	6
75	Determination of chemical species of fluoride during uptake mechanism of glass-ionomer cements with NMR spectroscopy. Dental Materials, 2021, 37, 1176-1182.	1.6	6
76	Correlation between mechanical properties and stabilization time of chemical bonds in glass-ionomer cements. Brazilian Oral Research, 2020, 34, e053.	0.6	6
77	Investigation of the direct synthesis of tetrabutyltin from butyl chloride. Journal of Organometallic Chemistry, 1982, 233, 173-183.	0.8	5
78	Special topics in polymer chemistry. Journal of Materials Chemistry, 2006, 16, 3867.	6.7	5
79	A preliminary study of the interaction of glass-ionomer dental cements with amino acids. Dental Materials, 2006, 22, 133-137.	1.6	5
80	Water sorption/desorption in polyacid-modified composite resins for dentistry. Journal of Materials Science: Materials in Medicine, 2008, 19, 1713-1717.	1.7	5
81	A preliminary study of the release of quaternary ammonium antimicrobial compounds from acrylic bone cement. Journal of Materials Science: Materials in Medicine, 2009, 20, 1579-1583.	1.7	5
82	Translucency parameter of conventional restorative glassâ€ionomer cements. Journal of Esthetic and Restorative Dentistry, 2021, 33, 935-942.	1.8	5
83	Long-Term Water Balance Evaluation in Glass Ionomer Restorative Materials. Materials, 2022, 15, 807.	1.3	5
84	Glass polyalkenoate dental cements based on physical blends of poly(acrylic acid) and poly(vinyl) Tj ETQq0 0 0 r	gBT /Over 1.6	locද 10 Tf 50
85	The kinetics of water loss from zinc phosphate and zinc polycarboxylate dental cements. Journal of Materials Science: Materials in Medicine, 2008, 19, 1719-1722.	1.7	4
86	Zinc polycarboxylate dental cement for the controlled release of an active organic substance: proof of concept. Journal of Materials Science: Materials in Medicine, 2010, 21, 1249-1253.	1.7	4
87	On CW-complexes over groups with periodic cohomology. Transactions of the American Mathematical Society, 2021, 374, 6531-6557.	0.5	4
88	Thermal behaviour of partially neutralised ethylene-maleic acid copolymer. British Polymer Journal, 1989, 21, 513-517.	0.7	3
89	The interaction of lactic acid–glass cements with aqueous solutions. Journal of Materials Science: Materials in Medicine, 2004, 15, 151-154.	1.7	3
90	Release of cetyl pyridinium chloride from fatty acid chelate temporary dental cement. Acta Biomaterialia Odontologica Scandinavica, 2016, 2, 1-6.	4.0	3

JOHN W NICHOLSON

#	Article	IF	CITATIONS
91	COMPOMERS. Journal of Esthetic and Restorative Dentistry, 2008, 20, 3-4.	1.8	2
92	The interaction of polyacid-modified composite resins ("compomers") with aqueous fluoride solutions. Journal of Applied Oral Science, 2009, 17, 216-219.	0.7	2
93	Emerging Ethical Issues in Restorative Dentistry. New Bioethics, 2017, 23, 236-248.	0.5	2
94	A cancellation theorem for modules over integral group rings. Mathematical Proceedings of the Cambridge Philosophical Society, 2021, 171, 317-327.	0.3	2
95	Glass-ionomer dental cements as novel solid-state buffers. Journal of Materials Research and Technology, 2021, 15, 3570-3574.	2.6	2
96	Critical Appraisal. Journal of Esthetic and Restorative Dentistry, 1999, 11, 223-227.	1.8	1
97	Martha Whiteley of Imperial College, London: A Pioneering Woman Chemist. Journal of Chemical Education, 2012, 89, 598-601.	1.1	1
98	Studies of the early stages of the dynamic setting process of chemically activated restorative glass-ionomer cements. Biomaterial Investigations in Dentistry, 2021, 8, 39-47.	3.0	1