
Walter F Paxton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3563038/publications.pdf Version: 2024-02-01

WALTED F DAXTON

#	Article	IF	CITATIONS
1	Modulating and Modeling the Surface ζ Potential of Hybrid Lipid/Polymer Nanovesicles: Implications for Surface Modification and Drug Delivery. ACS Applied Nano Materials, 2022, 5, 13820-13828.	5.0	6
2	Electrocatalytic Oxidation of Carbohydrates via Surface-Immobilized Viologen. Journal of the Electrochemical Society, 2021, 168, 104516.	2.9	2
3	Hybrid Lipid-Polymer Bilayers: pH-Mediated Interactions between Hybrid Vesicles and Glass. Polymers, 2020, 12, 745.	4.5	6
4	Adsorption and fusion of hybrid lipid/polymer vesicles onto 2D and 3D surfaces. Soft Matter, 2018, 14, 8112-8118.	2.7	11
5	Self-assembly/disassembly of giant double-hydrophilic polymersomes at biologically-relevant pH. Chemical Communications, 2018, 54, 9043-9046.	4.1	18
6	Dynamic Control over Aqueous Poly(butadiene- <i>b</i> -ethylene oxide) Self-Assembly through Olefin Metathesis. Macromolecules, 2018, 51, 6543-6551.	4.8	7
7	Monitoring and modulating ion traffic in hybrid lipid/polymer vesicles. Colloids and Surfaces B: Biointerfaces, 2017, 159, 268-276.	5.0	34
8	Tayi et al. reply. Nature, 2017, 547, E14-E15.	27.8	3
9	The Role of Membrane Fluidization in the Gel-Assisted Formation of Giant Polymersomes. PLoS ONE, 2016, 11, e0158729.	2.5	29
10	Lights on: Dye dequenching reveals polymersome fusion with polymer, lipid and stealth lipid vesicles. Polymer, 2016, 83, 239-245.	3.8	8
11	Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns. Scientific Reports, 2015, 5, 10331.	3.3	17
12	Bio-Lithography: A Novel Process for Modification and Patterning of Supported Lipid Bilayers using Lipopolysaccharide, a Biological Amphiphile. Biophysical Journal, 2015, 108, 487a.	0.5	0
13	Control of mechanically activated polymersome fusion: Factors affecting fusion. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 297-303.	2.1	5
14	Capable Cross-links: Polymersomes Reinforced with Catalytically Active Metal–Ligand Bonds. Chemistry of Materials, 2015, 27, 4808-4813.	6.7	9
15	Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments. Nanoscale, 2015, 7, 10998-11004.	5.6	10
16	Guest Editorial: Special Issue Micro- and Nanomachines. IEEE Transactions on Nanobioscience, 2015, 14, 258-259.	3.3	0
17	Ionic effects on the behavior of thermoresponsive PEO–PNIPAAm block copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 507-516.	2.1	12
18	Salt, Shake, Fuse—Giant Hybrid Polymer/Lipid Vesicles through Mechanically Activated Fusion. Angewandte Chemie - International Edition, 2014, 53, 3372-3376.	13.8	41

WALTER F PAXTON

#	Article	IF	CITATIONS
19	Hydroxide ion flux and pH-gradient driven ester hydrolysis in polymer vesicle reactors. Soft Matter, 2013, 9, 11295.	2.7	17
20	Patterned Assembly of Quantum Dots onto Surfaces Modified with Click Microcontact Printing. Advanced Materials, 2013, 25, 223-226.	21.0	14
21	Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature, 2012, 488, 485-489.	27.8	446
22	Surface-Enhanced Raman Spectroelectrochemistry of TTF-Modified Self-Assembled Monolayers. Journal of Physical Chemistry Letters, 2011, 2, 1145-1149.	4.6	36
23	Microcontact Click Printing for Templating Ultrathin Films of Metalâ^'Organic Frameworksâ€. Langmuir, 2011, 27, 1341-1345.	3.5	31
24	Degenerate [2]rotaxanes with electrostatic barriers. Organic and Biomolecular Chemistry, 2011, 9, 2240.	2.8	37
25	Highly stable tetrathiafulvalene radical dimers in [3]catenanes. Nature Chemistry, 2010, 2, 870-879.	13.6	171
26	Atmospheric Heterogeneous Stereochemistry. Journal of the American Chemical Society, 2009, 131, 13733-13737.	13.7	47
27	A Push-Button Molecular Switch. Journal of the American Chemical Society, 2009, 131, 11571-11580.	13.7	111
28	Heterogeneous Catalysis of a Copper-Coated Atomic Force Microscopy Tip for Direct-Write Click Chemistry. Journal of the American Chemical Society, 2009, 131, 6692-6694.	13.7	79
29	Molecular, Supramolecular, and Macromolecular Motors and Artificial Muscles. MRS Bulletin, 2009, 34, 671-681.	3.5	74
30	Accelerated Analyte Uptake on Single Beads in Microliter-Scale Batch Separations Using Acoustic Streaming: Plutonium Uptake by Anion Exchange for Analysis by Mass Spectrometry. Analytical Chemistry, 2008, 80, 4070-4077.	6.5	15
31	Developing Catalytic Nanomotors. , 2007, , 23-37.		4
32	Autonomously Moving Nanorods at a Viscous Interface. Nano Letters, 2006, 6, 66-72.	9.1	154
33	Catalytically Induced Electrokinetics for Motors and Micropumps. Journal of the American Chemical Society, 2006, 128, 14881-14888.	13.7	384
34	Chemical Locomotion. Angewandte Chemie - International Edition, 2006, 45, 5420-5429.	13.8	524
35	Catalytic Nanomotors: Remote-Controlled Autonomous Movement of Striped Metallic Nanorods. Angewandte Chemie - International Edition, 2005, 44, 744-746.	13.8	432
36	Motility of Catalytic Nanoparticles through Self-Generated Forces. Chemistry - A European Journal, 2005, 11, 6462-6470.	3.3	395

WALTER F PAXTON

#	Article	IF	CITATIONS
37	Catalytic Micropumps:Â Microscopic Convective Fluid Flow and Pattern Formation. Journal of the American Chemical Society, 2005, 127, 17150-17151.	13.7	150
38	Catalytic Nanomotors: Autonomous Movement of Striped Nanorods ChemInform, 2004, 35, no.	0.0	2
39	Metal-Mediated Polymerization of Acrylates:Â Relevance of Radical Traps?. Macromolecules, 2004, 37, 9305-9307.	4.8	41
40	Catalytic Nanomotors:Â Autonomous Movement of Striped Nanorods. Journal of the American Chemical Society, 2004, 126, 13424-13431.	13.7	1,805