Magnus Karlsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3562934/publications.pdf

Version: 2024-02-01

382 papers 9,999 citations

52 h-index 87 g-index

386 all docs 386 docs citations

386 times ranked 4251 citing authors

#	Article	IF	CITATIONS
1	Low-Noise Integrated Phase-Sensitive Waveguide Parametric Amplifiers. Journal of Lightwave Technology, 2022, 40, 128-135.	2.7	11
2	Low-Noise Phase-sensitive Parametric Amplifiers Based on Integrated Silicon-Nitride-Waveguides for Optical Signal Processing. Journal of Lightwave Technology, 2022, 40, 1847-1854.	2.7	5
3	Low-Complexity Voronoi Shaping for the Gaussian Channel. IEEE Transactions on Communications, 2022, 70, 865-873.	4.9	3
4	Spectral Interferometry with Frequency Combs. Micromachines, 2022, 13, 614.	1.4	2
5	Ultralow-loss Silicon Nitride Waveguides for Parametric Amplification. , 2022, , .		0
6	Angled Flip-Chip Integration of VCSELs on Silicon Photonic Integrated Circuits. Journal of Lightwave Technology, 2022, 40, 5190-5200.	2.7	3
7	Periodicity-Enabled Size Reduction of Symbol Based Predistortion for High-Order QAM. Journal of Lightwave Technology, 2022, 40, 6168-6178.	2.7	7
8	Elliptical-Core Highly Nonlinear Few-Mode Fiber Based OXC for WDM-MDM Networks. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-11.	1.9	6
9	Dissipative solitons in photonic molecules. Nature Photonics, 2021, 15, 305-310.	15.6	90
_		_	!
10	Low-Complexity Geometric Shaping. Journal of Lightwave Technology, 2021, 39, 363-371.	2.7	22
10	Low-Complexity Geometric Shaping. Journal of Lightwave Technology, 2021, 39, 363-371. Analytic theory for parametric gain in lossy integrated waveguides., 2021,,.	2.7	8
		2.7	
11	Analytic theory for parametric gain in lossy integrated waveguides., 2021,,. Analytical Modeling of Nonlinear Fiber Propagation for Four Dimensional Symmetric Constellations.		8
11 12	Analytic theory for parametric gain in lossy integrated waveguides., 2021,,. Analytical Modeling of Nonlinear Fiber Propagation for Four Dimensional Symmetric Constellations. Journal of Lightwave Technology, 2021, 39, 2704-2713. High Spectral Efficiency Coherent Superchannel Transmission With Soliton Microcombs. Journal of	2.7	9
11 12 13	Analytical Modeling of Nonlinear Fiber Propagation for Four Dimensional Symmetric Constellations. Journal of Lightwave Technology, 2021, 39, 2704-2713. High Spectral Efficiency Coherent Superchannel Transmission With Soliton Microcombs. Journal of Lightwave Technology, 2021, 39, 4367-4373.	2.7	9 34
11 12 13	Analytical Modeling of Nonlinear Fiber Propagation for Four Dimensional Symmetric Constellations. Journal of Lightwave Technology, 2021, 39, 2704-2713. High Spectral Efficiency Coherent Superchannel Transmission With Soliton Microcombs. Journal of Lightwave Technology, 2021, 39, 4367-4373. Frequency-comb-calibrated swept-wavelength interferometry. Optics Express, 2021, 29, 24363.	2.7	8 9 34 18
11 12 13 14	Analytical Modeling of Nonlinear Fiber Propagation for Four Dimensional Symmetric Constellations. Journal of Lightwave Technology, 2021, 39, 2704-2713. High Spectral Efficiency Coherent Superchannel Transmission With Soliton Microcombs. Journal of Lightwave Technology, 2021, 39, 4367-4373. Frequency-comb-calibrated swept-wavelength interferometry. Optics Express, 2021, 29, 24363. Designing Voronoi Constellations to Minimize Bit Error Rate., 2021,, Compressed Shaping: Concept and FPGA Demonstration. Journal of Lightwave Technology, 2021, 39,	2.7 2.7 1.7	8 9 34 18

#	Article	IF	CITATIONS
19	Ultralow-loss meter-long dispersion-engineered silicon nitride waveguides. , 2021, , .		5
20	FPGA Implementation of Hierarchical Subcarrier Rate and Distribution Matching for up to 1.032Tb/s or 262144-QAM. , $2021,,.$		0
21	Overcoming the Quantum Noise Limit with Continuous-wave Phase-Sensitive Parametric Amplification Based on a Single Integrated Silicon-Nitride Waveguide., 2021,,.		3
22	Experimental Demonstration of 8-Dimensional Voronoi Constellations with 65,536 and 16,777,216 Symbols. , 2021, , .		2
23	Characterisation of a Coupled-Core Fiber Using Dual-Comb Swept-Wavelength Interferometry. , 2021, , .		3
24	Symbol-Based Supervised Learning Predistortion for Compensating Transmitter Nonlinearity. , 2021, , .		3
25	Phase-coherent lightwave communications with frequency combs. Nature Communications, 2020, 11, 201.	5.8	73
26	Antialiased Transmitter-Side Digital Backpropagation. IEEE Photonics Technology Letters, 2020, 32, 1211-1214.	1.3	2
27	Post-FEC BER Benchmarking for Bit-Interleaved Coded Modulation With Probabilistic Shaping. Journal of Lightwave Technology, 2020, 38, 4292-4306.	2.7	9
28	Joint Superchannel Digital Signal Processing for Effective Inter-Channel Interference Cancellation. Journal of Lightwave Technology, 2020, 38, 5676-5684.	2.7	13
29	Pilot Distributions for Joint-Channel Carrier-Phase Estimation in Multichannel Optical Communications. Journal of Lightwave Technology, 2020, 38, 4656-4663.	2.7	6
30	Optimization of Transmitter-Side Signal Rotations in the Presence of Laser Phase Noise. Journal of Lightwave Technology, 2020, 38, 3850-3858.	2.7	0
31	When to Use Optical Amplification in Noncoherent Transmission: An Information-Theoretic Approach. IEEE Transactions on Communications, 2020, 68, 2438-2445.	4.9	6
32	Performance Monitoring for Live Systems with Soft FEC and Multilevel Modulation. Journal of Lightwave Technology, 2020, , $1-1$.	2.7	4
33	Fiber-based phase-sensitive optical amplifiers and their applications. Advances in Optics and Photonics, 2020, 12, 367.	12.1	61
34	Waveguide tapering for improved parametric amplification in integrated nonlinear Si ₃ N ₄ waveguides. Optics Express, 2020, 28, 23467.	1.7	12
35	Bayesian filtering framework for noise characterization of frequency combs. Optics Express, 2020, 28, 13949.	1.7	10
36	Enhanced analog-optical link performance with noiseless phase-sensitive fiber optical parametric amplifiers. Optics Express, 2020, 28, 23534.	1.7	9

#	Article	IF	CITATIONS
37	Modulation format dependence on transmission reach in phase-sensitively amplified fiber links. Optics Express, 2020, 28, 34623.	1.7	4
38	Sparse-Dense MLC for Peak Power Constrained Channels. , 2020, , .		0
39	Look-up Table based Pre-distortion for Transmitters Employing High-Spectral-Efficiency Modulation Formats. , 2020, , .		9
40	Lattice-based geometric shaping. , 2020, , .		3
41	Dual-Comb Swept Wavelength Interferometry. , 2020, , .		3
42	On the Performance under Hard and Soft Bitwise Mismatched-Decoding. , 2020, , .		1
43	Nonlinearity mitigation dependence on modulation format in phase-sensitively amplified fiber links. , 2020, , .		1
44	Multi-Channel Equalization for Comb-Based Systems. , 2020, , .		1
45	Multilevel Coding with Flexible Probabilistic Shaping for Rate-Adaptive and Low-Power Optical Communications. , 2020, , .		7
46	Active Mode-Selective Conversion Enabled by an Elliptical- Core Highly Nonlinear Few-Mode Fiber. , 2020, , .		0
47	Required and Received SNRs in Coded Modulation. , 2020, , .		0
48	On the Performance of Joint-Core Carrier-Phase Estimation in the Presence of Intercore Skew. Journal of Lightwave Technology, 2019, 37, 5291-5298.	2.7	0
49	Channel allocation in elastic optical networks using traveling salesman problem algorithms. Journal of Optical Communications and Networking, 2019, 11, C58.	3.3	2
50	Cross-Phase Modulation Mitigation in Phase-Sensitive Amplifier Links. IEEE Photonics Technology Letters, 2019, 31, 1733-1736.	1.3	11
51	Laser Frequency Combs for Coherent Optical Communications. Journal of Lightwave Technology, 2019, 37, 1663-1670.	2.7	96
52	Hierarchical Distribution Matching for Probabilistically Shaped Coded Modulation. Journal of Lightwave Technology, 2019, 37, 1579-1589.	2.7	71
53	1060 nm Single-Mode VCSEL and Single-Mode Fiber Links for Long-Reach Optical Interconnects. Journal of Lightwave Technology, 2019, 37, 2963-2969.	2.7	29
54	Experimental Investigation of Link Impairments in Pilot Tone Aided Superchannel Transmission. IEEE Photonics Technology Letters, 2019, 31, 459-462.	1.3	2

#	Article	lF	CITATIONS
55	Dielectric Broadband Metasurfaces for Fiber Modeâ∈Multiplexed Communications. Advanced Optical Materials, 2019, 7, 1801679.	3.6	20
56	Phase Noise Characterization and EEPN of a Full C-Band Tunable Laser in Coherent Optical Systems. IEEE Photonics Technology Letters, 2019, 31, 1991-1994.	1.3	0
57	Pilot-Aided Joint-Channel Carrier-Phase Estimation in Space-Division Multiplexed Multicore Fiber Transmission. Journal of Lightwave Technology, 2019, 37, 1133-1142.	2.7	9
58	12 b/s/Hz Spectral Efficiency Over the C-band Based on Comb-Based Superchannels. Journal of Lightwave Technology, 2019, 37, 411-417.	2.7	13
59	Master-slave carrier recovery for M-QAM multicore fiber transmission. Optics Express, 2019, 27, 22226.	1.7	8
60	Overhead-optimization of pilot-based digital signal processing for flexible high spectral efficiency transmission. Optics Express, 2019, 27, 24654.	1.7	47
61	Analysis of nonlinearity mitigation using phase-sensitive optical parametric amplifiers. Optics Express, 2019, 27, 31926.	1.7	7
62	Design, fabrication, and characterization of a highly nonlinear few-mode fiber. Photonics Research, 2019, 7, 1354.	3.4	14
63	Frequency Comb Based High-Spectral Efficiency Transmission. , 2019, , .		O
64	Joint Source–Channel Coding via Compressed Distribution Matching in Fiber-Optic Communications. , 2019, , .		3
65	High Spectral Efficiency PM-128QAM Comb-Based Superchannel Transmission Enabled by a Single Shared Optical Pilot Tone. Journal of Lightwave Technology, 2018, 36, 1318-1325.	2.7	36
66	10 Tb/s PM-64QAM Self-Homodyne Comb-Based Superchannel Transmission With 4% Shared Pilot Tone Overhead. Journal of Lightwave Technology, 2018, 36, 3176-3184.	2.7	41
67	Technologies Toward Implementation of Probabilistic Constellation Shaping. , 2018, , .		5
68	Power Consumption Savings Through Joint Carrier Recovery for Spectral and Spatial Superchannels. , 2018, , .		4
69	ASIC Implementation of Time-Domain Digital Back Propagation for Coherent Receivers. IEEE Photonics Technology Letters, 2018, 30, 1179-1182.	1.3	13
70	Long-haul optical transmission link using low-noise phase-sensitive amplifiers. Nature Communications, 2018, 9, 2513.	5.8	61
71	Noise in phase-(in)sensitive dual-core fiber parametric amplification. Optics Express, 2018, 26, 4050.	1.7	13
72	Correlation Metric for Polarization Changes. IEEE Photonics Technology Letters, 2018, 30, 1575-1578.	1.3	0

#	Article	IF	Citations
73	Phase-sensitive amplifier link with distributed Raman amplification. Optics Express, 2018, 26, 19854.	1.7	10
74	Frequency Comb-Based WDM Transmission Systems Enabling Joint Signal Processing. Applied Sciences (Switzerland), 2018, 8, 718.	1.3	56
75	Phase Correlation Between Lines of Electro-Optical Frequency Combs. , 2018, , .		4
76	Modulation and Detection for Multicore Superchannels with Correlated Phase Noise., 2018,,.		2
77	Low-Complexity Variable-Length Output Distribution Matching with Periodical Distribution Uniformalization. , $2018, \ldots$		14
78	Sensitivity Improvements in an 850-nm VCSEL-Based Link Using a Two-Tap Pre-Emphasis Electronic Filter. Journal of Lightwave Technology, 2017, 35, 1633-1639.	2.7	7
79	Power Consumption Analysis of Hybrid EDFA/Raman Amplifiers in Long-Haul Transmission Systems. Journal of Lightwave Technology, 2017, 35, 2132-2142.	2.7	25
80	VCSEL design and integration for high-capacity optical interconnects. Proceedings of SPIE, 2017, , .	0.8	7
81	Theoretical Investigation of Longitudinal Dispersion Fluctuations on All-Fiber Phase-Sensitive Parametric Optical Switch. Journal of Lightwave Technology, 2017, 35, 1646-1653.	2.7	2
82	Design of Highly Nonlinear Few-Mode Fiber for C-Band Optical Parametric Amplification. Journal of Lightwave Technology, 2017, 35, 2810-2817.	2.7	28
83	High-speed optical interconnects with 850nm VCSELS and advanced modulation formats. Proceedings of SPIE, 2017, , .	0.8	0
84	Impact of Damping on 50 Gbps 4-PAM Modulation of 25G Class VCSELs. Journal of Lightwave Technology, 2017, 35, 4203-4209.	2.7	19
85	Effects of Polarization-Mode Dispersion on Degenerate Four-Wave Mixing. Journal of Lightwave Technology, 2017, 35, 4210-4218.	2.7	8
86	Multidimensional Modulation and Coding in Optical Transport. Journal of Lightwave Technology, 2017, 35, 876-884.	2.7	29
87	Post-FEC BER Prediction Accuracy for Probabilistically Shaped Signaling in Fiber-Optic Communications. , 2017, , .		2
88	Pilot Distributions for Phase Tracking in Space-Division Multiplexed Systems. , 2017, , .		5
89	Joint Carrier Recovery for DSP Complexity Reduction in Frequency Comb-Based Superchannel Transceivers. , 2017, , .		16
90	Long-Haul Optical Transmission of 16-QAM Signal with In-Line Phase-Sensitive Amplifiers. , 2017, , .		3

#	Article	IF	Citations
91	Short-Block-Length Shaping by Simple Mark Ratio Controllers for Granular and Wide-Range Spectral Efficiencies. , 2017, , .		10
92	Digital backpropagation accounting for polarization-mode dispersion. Optics Express, 2017, 25, 1903.	1.7	27
93	Feature issue introduction: Nonlinearity mitigation for coherent transmission systems. Optics Express, 2017, 25, 4552.	1.7	2
94	Parametric amplification with a dual-core fiber. Optics Express, 2017, 25, 6234.	1.7	19
95	Performance Metrics for Systems With Soft-Decision FEC and Probabilistic Shaping. IEEE Photonics Technology Letters, 2017, 29, 2111-2114.	1.3	25
96	10 Tb/s Self-Homodyne 64-QAM Superchannel Transmission with 4% Spectral Overhead., 2017,,.		5
97	Phase-Noise Compensation for Spatial-Division Multiplexed Transmission., 2017, , .		5
98	Temporal Stochastic Channel Model for Absolute Polarization State and Polarization-Mode Dispersion. , 2017, , .		1
99	Experimental Investigation of Nonlinearity Mitigation Properties of a Hybrid Distributed Raman/Phase-sensitive Amplifier Link. , 2017, , .		0
100	Modified Digital Backpropagation Accounting for Polarization-Mode Dispersion., 2017,,.		1
101	Self-homodyne 24×32-QAM superchannel receiver enabled by all-optical comb regeneration using brillouin amplification. Optics Express, 2016, 24, 29714.	1.7	34
102	Proposed Implementation of "Non-Physical―Four-Dimensional Polarization Rotations. Journal of Lightwave Technology, 2016, 34, 3317-3322.	2.7	1
103	Polarization-Independent Phase-Sensitive Amplification. Journal of Lightwave Technology, 2016, 34, 3171-3180.	2.7	12
104	Modulation Format Independent Joint Polarization and Phase Tracking for Coherent Receivers. Journal of Lightwave Technology, 2016, 34, 3354-3364.	2.7	4
105	Roadmap of optical communications. Journal of Optics (United Kingdom), 2016, 18, 063002.	1.0	402
106	94-Gb/s 4-PAM Using an 850-nm VCSEL, Pre-Emphasis, and Receiver Equalization. IEEE Photonics Technology Letters, 2016, 28, 2519-2521.	1.3	42
107	Dispersion Compensation FIR Filter With Improved Robustness to Coefficient Quantization Errors. Journal of Lightwave Technology, 2016, 34, 5110-5117.	2.7	16
108	Mitigation of nonlinear distortion in hybrid Raman/phase-sensitive amplifier links. Optics Express, 2016, 24, 888.	1.7	20

#	Article	IF	CITATIONS
109	Implementation of an optical fiber frequency distribution via commercial DWDM., 2016,,.		O
110	Polarization Drift Channel Model for Coherent Fibre-Optic Systems. Scientific Reports, 2016, 6, 21217.	1.6	31
111	Frequency-Comb Regeneration for Self-Homodyne Superchannels. Journal of Lightwave Technology, 2016, 34, 1800-1806.	2.7	21
112	Transmission Systems With Low Noise Phase-Sensitive Parametric Amplifiers. Journal of Lightwave Technology, 2016, 34, 1411-1423.	2.7	26
113	Demonstration of Ultra Wideband Phase-Sensitive Fiber Optical Parametric Amplifier. IEEE Photonics Technology Letters, 2016, 28, 175-177.	1.3	22
114	Traffic-Grooming- and Multipath-Routing-Enabled Impairment-Aware Elastic Optical Networks. Journal of Optical Communications and Networking, 2016, 8, 58.	3.3	31
115	Multidimensional modulation formats for coherent optical communications. Proceedings of SPIE, 2016, , .	0.8	3
116	Impact of 4D Channel Distribution on the Achievable Rates in Coherent Optical Communication Experiments. Journal of Lightwave Technology, 2016, 34, 2256-2266.	2.7	51
117	Regenerator site selection in impairment-aware elastic optical networks. , 2016, , .		6
118	Multidimensional Modulation and Coding. , 2016, , .		4
119	Improved Achievable Information Rates by Optimized Four-Dimensional Demappers in Optical Transmission Experiments. , 2016, , .		6
120	Symbol-by-Symbol Joint Polarization and Phase Tracking in Coherent Receivers. , 2015, , .		4
121	Experimental Investigation of a Four-Dimensional 256-ary Lattice-based Modulation Format., 2015, , .		14
122	Phase-Sensitive Amplified Transmission Links for Improved Sensitivity and Nonlinearity Tolerance. Journal of Lightwave Technology, 2015, 33, 710-721.	2.7	111
123	Sensitivity improvements in an 850 nm VCSEL transmitter using a one-tap pre-emphasis electronic filter. , 2015, , .		3
124	Four-dimensional estimates of mutual information in coherent optical communication experiments. , 2015, , .		6
125	Power consumption of hybrid EDFA/Raman amplified systems. , 2015, , .		1
126	Experimental Investigation of Crosstalk Penalties in Multicore Fiber Transmission Systems. IEEE Photonics Journal, 2015, 7, 1-7.	1.0	14

#	Article	IF	CITATIONS
127	Transmission systems with low noise phase sensitive parametric amplifiers., 2015,,.		O
128	Phase-sensitive fiber-based parametric all-optical switch. Optics Express, 2015, 23, 33426.	1.7	8
129	On the impact of carrier phase estimation on phase correlations in coherent fiber transmission. , 2015, , \cdot		7
130	70 Gbps 4-PAM and 56 Gbps 8-PAM Using an 850 nm VCSEL. Journal of Lightwave Technology, 2015, 33, 1395-1401.	2.7	84
131	Mitigation of nonlinearities using conjugate data repetition. Optics Express, 2015, 23, 2392.	1.7	29
132	Fast and robust chromatic dispersion estimation based on temporal auto-correlation after digital spectrum superposition. Optics Express, 2015, 23, 15418.	1.7	12
133	Nonlinear phase noise mitigation in phase-sensitive amplified transmission systems. Optics Express, 2015, 23, 11724.	1.7	21
134	Single parity check-coded 16QAM over spatial superchannels in multicore fiber transmission. Optics Express, 2015, 23, 14569.	1.7	13
135	Influence of Behavioral Models on Multiuser Channel Capacity. Journal of Lightwave Technology, 2015, 33, 3507-3515.	2.7	16
136	Energy Efficiency of VCSELs in the Context of Short-Range Optical Links. IEEE Photonics Technology Letters, 2015, 27, 1749-1752.	1.3	10
137	Coherent transmission channels as 4d rotations. , 2015, , .		2
138	Long-Haul Optical Transmission Using In-Line Phase-Sensitive Amplifiers. , 2015, , .		0
139	Biorthogonal Modulation in 8 Dimensions Experimentally Implemented as 2PPM-PS-QPSK., 2014,,.		7
140	Focus issue introduction: space-division multiplexing. Optics Express, 2014, 22, 32526.	1.7	10
141	70 Gbps 4-PAM and 56 Gbps 8-PAM using an 850 nm VCSEL. , 2014, , .		11
142	CMA-based CD and DGD estimation in presence of experimental higher order PMD. , 2014, , .		0
143	Comparison between coherent superposition in DSP and PSA for mitigation of nonlinearities in a single-span link. , 2014, , .		0
144	Linear and Nonlinear Transmission of 16-QAM Over 105 km Phase-Sensitive Amplified Link. , 2014, , .		11

#	Article	IF	Citations
145	Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification. , 2014, , .		14
146	Record-high sensitivity receiver using phase sensitive fiber optical parametric amplification. , 2014, , .		5
147	Experimental analysis of degenerate vector phase-sensitive amplification. Optics Express, 2014, 22, 21889.	1.7	71
148	Noise beating in hybrid phase-sensitive amplifier systems. Optics Express, 2014, 22, 5762.	1.7	51
149	Frequency-resolved noise figure measurements of phase (in)sensitive fiber optical parametric amplifiers. Optics Express, 2014, 22, 27821.	1.7	4
150	Quadrature demultiplexing using a degenerate vector parametric amplifier. Optics Express, 2014, 22, 29424.	1.7	78
151	Optical signal to noise ratio improvement through unbalanced noise beating in phase-sensitive parametric amplifiers. Optics Express, 2014, 22, 10477.	1.7	14
152	Coded Modulation for Fiber-Optic Networks: Toward better tradeoff between signal processing complexity and optical transparent reach. IEEE Signal Processing Magazine, 2014, 31, 93-103.	4.6	27
153	Experimental comparison of PS-QPSK and LDPC-coded PM-QPSK with equal spectral efficiency in WDM transmission. , 2014, , .		0
154	Modulation formats for multi-core fiber transmission. Optics Express, 2014, 22, 32457.	1.7	44
155	Phase-sensitive amplification and regeneration of dual-polarization BPSK without polarization diversity. , 2014, , .		6
156	Rate-Adaptive Coded Modulation for Fiber-Optic Communications. Journal of Lightwave Technology, 2014, 32, 333-343.	2.7	62
157	Four-dimensional Rotations in Coherent Optical Communications. Journal of Lightwave Technology, 2014, 32, 1246-1257.	2.7	25
158	Capacity of a Nonlinear Optical Channel With Finite Memory. Journal of Lightwave Technology, 2014, 32, 2862-2876.	2.7	122
159	A Low-Complexity Detector for Memoryless Polarization-Multiplexed Fiber-Optical Channels. IEEE Communications Letters, 2014, 18, 368-371.	2.5	О
160	<italic>K</italic> -Over- <italic>L</italic> Multidimensional Position Modulation. Journal of Lightwave Technology, 2014, 32, 2254-2262.	2.7	21
161	Four-Dimensional Modulation Formats for Long-Haul Transmission. , 2014, , .		2
162	Spectrum superposition based chromatic dispersion estimation for digital coherent receivers. , 2014, , .		1

#	Article	IF	CITATIONS
163	Perturbation Analysis of Nonlinear Propagation in a Strongly Dispersive Optical Communication System. Journal of Lightwave Technology, 2013, 31, 1273-1282.	2.7	92
164	60ÂGbits errorâ€free 4â€PAM operation with 850Ânm VCSEL. Electronics Letters, 2013, 49, 953-955.	0.5	56
165	Subset-Optimized Polarization-Multiplexed PSK for Fiber-Optic Communications. IEEE Communications Letters, 2013, 17, 838-840.	2.5	14
166	Idler chirp optimization in a pulse-pumped parametric amplifier., 2013,,.		1
167	Fiber Optic Parametric Amplifier With 10-dB Net Gain Without Pump Dithering. IEEE Photonics Technology Letters, 2013, 25, 234-237.	1.3	86
168	Comparison of Intersymbol Interference Power Penalties for OOK and 4-PAM in Short-Range Optical Links. Journal of Lightwave Technology, 2013, 31, 3525-3534.	2.7	35
169	WDM Channel Capacity and its Dependence on Multichannel Adaptation Models., 2013,,.		9
170	Phase-Sensitive Amplifiers for Optical Links. , 2013, , .		1
171	Schmidt decompositions of parametric processes II: Vector four-wave mixing. Optics Express, 2013, 21, 11009.	1.7	5
172	On nonlinearly-induced noise in single-channel optical links with digital backpropagation. Optics Express, 2013, 21, 26376.	1.7	13
173	High-Speed 850Ânm Quasi-Single-Mode VCSELs for Extended-Reach Optical Interconnects. Journal of Optical Communications and Networking, 2013, 5, 686.	3.3	18
174	Schmidt decompositions of parametric processes I: Basic theory and simple examples. Optics Express, 2013, 21, 1374.	1.7	18
175	Injection locking-based pump recovery for phase-sensitive amplified links. Optics Express, 2013, 21, 14512.	1.7	134
176	Comparison of 128-SP-QAM and PM-16QAM in long-haul WDM transmission. Optics Express, 2013, 21, 19269.	1.7	26
177	Focus issue introduction: Nonlinear optics 2013. Optics Express, 2013, 21, 31176.	1.7	1
178	MCRB for Timing and Phase Offset for Low-Rate Optical Communication with Self-Phase Modulation. IEEE Communications Letters, 2013, 17, 1004-1007.	2.5	4
179	35.2 Gbps 8-PAM Transmission Over 100 m of MMF Using an 850 nm VCSEL., 2013,,.		7
180	Demonstration of Degenerate Vector Phase-Sensitive Amplification. , 2013, , .		6

#	Article	IF	Citations
181	Transmitter Mask Testing for 28 GBaud PM-QPSK., 2013,,.		O
182	Mitigation of Nonlinear Impairments on QPSK Data in Phase-Sensitive Amplified Links. , 2013, , .		8
183	Frequency and Polarization Switched QPSK., 2013,,.		23
184	Experimental Demonstration of an Optimized 16-ary Four-Dimensional Modulation Format Using Optical OFDM., 2013,,.		5
185	Experimental Demonstration of 128-SP-QAM in Uncompensated Long-Haul Transmission., 2013,,.		9
186	Long-Haul Transmission of PM-2PPM-QPSK at 42.8 Gbit/s., 2013,,.		7
187	Intersymbol Interference Penalties for OOK and 4-PAM in Short-range Optical Communications. , $2013,$,		6
188	Fiber-optic Parametric Amplifiers Without Pump Dithering. , 2013, , .		0
189	Practical Detection Schemes for Power Efficient Modulation Formats. , 2013, , .		0
190	Methodology for Power-Aware Coherent Receiver Design. , 2013, , .		0
191	Transmission of PM-QPSK and PS-QPSK with different fiber span lengths. Optics Express, 2012, 20, 7544.	1.7	11
192	Comparison of 128-SP-QAM with PM-16-QAM. Optics Express, 2012, 20, 8356.	1.7	32
193	Transmission of 1936 Tb/s (11 $\tilde{A}-$ 176 Gb/s) DP-16QAM superchannel signals over 640 km SSMF with EDFA only and 300 GHz WSS channel. Optics Express, 2012, 20, B223.	1.7	12
194	Building up low-complexity spectrally-efficient Terabit superchannels by receiver-side duobinary shaping. Optics Express, 2012, 20, 10271.	1.7	12
195	Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation. Optics Express, 2012, 20, 21400.	1.7	43
196	4-PAM for High-Speed Short-Range Optical Communications. Journal of Optical Communications and Networking, 2012, 4, 885.	3.3	117
197	Experimental Characterization of a Phase-Sensitive Four-Mode Fiber-Optic Parametric Amplifier. , 2012, , .		9
198	Phase-Sensitive Amplified Optical Link Operating in the Nonlinear Transmission Regime. , 2012, , .		13

#	Article	IF	CITATIONS
199	Adaptive coded modulation for nonlinear fiber-optical channels. , 2012, , .		2
200	Optimized Lattice-based 16-level Subcarrier Modulation for IM/DD Systems. , 2012, , .		1
201	Comparison of Set-Partitioned Two-Polarization 16QAM Formats with PDM-QPSK and PDM-8QAM for Optical Transmission Systems with Error-Correction Coding. , 2012, , .		21
202	625 Gbit/s Superchannel Consisting of Interleaved DP-16QAM and DP-QPSK with 4.17 bit/s/Hz Spectral Efficiency. , $2012,$, .		0
203	The Limits of Digital Backpropagation in Nonlinear Coherent Fiber-Optical Links. , 2012, , .		0
204	Performance Comparisons of DP-16QAM and Duobinary-Shaped DP-QPSK for Optical Systems With 4.1 Bit/s/Hz Spectral Efficiency. Journal of Lightwave Technology, 2012, 30, 2307-2314.	2.7	19
205	Influence of Fiber-Bragg Grating-Induced Group-Delay Ripple in High-Speed Transmission Systems. Journal of Optical Communications and Networking, 2012, 4, 514.	3.3	94
206	Modified Cramér–Rao Bound for Clock Recovery in the Presence of Self-Phase Modulation. Journal of Lightwave Technology, 2012, 30, 2556-2561.	2.7	1
207	High speed VCSELs for optical interconnects. , 2012, , .		4
208	Satellite constellations: Towards the nonlinear channel capacity. , 2012, , .		10
209	A Discrete-Time Model for Uncompensated Single-Channel Fiber-Optical Links. IEEE Transactions on Communications, 2012, 60, 3440-3450.	4.9	48
210	Approaching Nyquist Limit in WDM Systems by Low-Complexity Receiver-Side Duobinary Shaping. Journal of Lightwave Technology, 2012, 30, 1664-1676.	2.7	122
211	Ultralow Noise, Broadband Phase-Sensitive Optical Amplifiers, and Their Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1016-1032.	1.9	109
212	Optimizing Constellations for Single-Subcarrier Intensity-Modulated Optical Systems. IEEE Transactions on Information Theory, 2012, 58, 4645-4659.	1.5	57
213	Phase-Sensitive Optical Pre-Amplifier Implemented in an 80km DQPSK Link. , 2012, , .		5
214	Low-Complexity Duobinary Signaling and Detection for Sensitivity Improvement in Nyquist-WDM Coherent System., 2012,,.		6
215	Spectrally efficient four-dimensional modulation. , 2012, , .		14
216	Phase-Sensitive Optical Pre-Amplifier Implemented in an 80km DQPSK Link., 2012,,.		7

#	Article	IF	Citations
217	Short-Pulse Amplification in a Phase-Sensitive Amplifier. , 2012, , .		1
218	Optical Injection-Locking-Based Pump Recovery for Phase-Sensitively Amplified Links., 2012,,.		0
219	$1.94 Tb/s\ (11 \mbox{\ensuremath{\tilde{A}}} - 176 \mbox{\ensuremath{Gb/s}})$ DP-16QAM Superchannel Transmission over 640km EDFA-Only SSMF and Two 280GHz WSSs. , 2012, , .		3
220	Transmission of $3\tilde{A}$ —224 Gbit/s DP-16QAM Signals with (up to) 7.2 bit/s/Hz Spectral Efficiency in SMF-EDFA Links. , 2012, , .		1
221	CMA misconvergence in coherent optical communication for signals generated from a single PRBS. , 2011, , .		1
222	Efficient voltage feed-forward algorithms for switched mode power supplies. , 2011, , .		1
223	A load capacitance identification algorithm for switched Mode Power Supplies. , 2011, , .		0
224	Impact of Zero-Dispersion-Wavelength Distributions on the Noise Figure Nonreciprocity of a Fiber Parametric Amplifier. IEEE Photonics Technology Letters, 2011, 23, 365-367.	1.3	0
225	Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nature Photonics, 2011, 5, 430-436.	15.6	476
226	Designing Power-Efficient Modulation Formats for Noncoherent Optical Systems., 2011,,.		6
227	Filter Optimization for Self-Homodyne Coherent WDM Systems Using Interleaved Polarization Division Multiplexing. Journal of Lightwave Technology, 2011, 29, 1219-1226.	2.7	26
228	Signal Statistics in Fiber-Optical Channels With Polarization Multiplexing and Self-Phase Modulation. Journal of Lightwave Technology, 2011, 29, 2379-2386.	2.7	22
229	Format Conversion of Optical Multilevel Signals Using FWM-Based Optical Phase Erasure. Journal of Lightwave Technology, 2011, 29, 2460-2466.	2.7	45
230	Performance Comparison of Differential 8-Ary Modulation Formats in High-Speed Optical Transmission Systems. Journal of Lightwave Technology, 2011, 29, 2954-2962.	2.7	2
231	A Blind Phase Stabilization Algorithm for Parallel Coherent Receivers. Journal of Lightwave Technology, 2011, 29, 3737-3743.	2.7	3
232	Convergence Comparison of the CMA and ICA for Blind Polarization Demultiplexing. Journal of Optical Communications and Networking, 2011, 3, 493.	3.3	21
233	Modified constant modulus algorithm for polarization-switched QPSK. Optics Express, 2011, 19, 7734.	1.7	41
234	Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s. Optics Express, 2011, 19, 7839.	1.7	64

#	Article	IF	CITATIONS
235	Experimental comparison of modulation formats in IM/DD links. Optics Express, 2011, 19, 9881.	1.7	7
236	Higher-capacity communication links based on two-mode phase-sensitive amplifiers. Optics Express, 2011, 19, 11977.	1.7	15
237	Focus Issue: Space Multiplexed Optical Transmission. Optics Express, 2011, 19, 16574.	1.7	36
238	30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL. Optics Express, 2011, 19, B203.	1.7	54
239	Multilevel pulse-position modulation for optical power-efficient communication. Optics Express, 2011, 19, B799.	1.7	8
240	Noise performance of a frequency nondegenerate phase-sensitive amplifier with unequalized inputs. Optics Letters, 2011, 36, 722.	1.7	30
241	Phase-to-phase and phase-to-amplitude transfer characteristics of a nondegenerate-idler phase-sensitive amplifier. Optics Letters, 2011, 36, 4356.	1.7	26
242	Focus issue introduction: nonlinear optics. Optical Materials Express, 2011, 1, 1393.	1.6	0
243	Power-Efficient Modulation Schemes. , 2011, , 219-252.		5
244	On the Symbol Error Probability of Regular Polytopes. IEEE Transactions on Information Theory, 2011, 57, 3411-3415.	1.5	9
245	Phase and Amplitude Transfer Functions of a Saturated Phase-Sensitive Parametric Amplifier., 2011,,.		2
246	An ML-Based Detector for Optical Communication in the Presence of Nonlinear Phase Noise. , 2011, , .		17
247	Linear and Nonlinear Crosstalk Tolerance of Polarization-Switched QPSK and Polarization-Multiplexed QPSK., 2011,,.		1
248	30 Gbps 4-PAM transmission over 200m of MMF using an 850 nm VCSEL., 2011,,.		5
249	Generalized Pulse-Position Modulation for Optical Power-Efficient Communication. , 2011, , .		14
250	Measurement of the Phase Noise Tracking Capability of a Digital Coherent Receiver., 2011,,.		1
251	Stochastic Backpropagation for Coherent Optical Communications. , 2011, , .		7
252	Optimization of 16-point Ring Constellations in the Presence of Nonlinear Phase Noise. , 2011, , .		21

#	Article	IF	CITATIONS
253	Demonstration of 8-level subcarrier modulation sensitivity improvement in an IM/DD system., 2011,,.		1
254	A Modified CMA for PS-QPSK., 2011,,.		1
255	Electronic dispersion compensation by Hadamard transformation. , 2010, , .		3
256	Increasing up to seven times the stability of passively mode-locked fiber ring laser by introducing in the cavity a certain length of dispersion compensating fiber. Proceedings of SPIE, 2010 , , .	0.8	0
257	High-speed 850-nm VCSELs for 40-Gb/s transmission. Proceedings of SPIE, 2010, , .	0.8	1
258	Experimental characterization of the phase squeezing properties of a phase-sensitive parametric amplifier in non-degenerate idler configuration. , 2010, , .		8
259	Interleaved polarization division multiplexing in self-homodyne coherent WDM systems. , 2010, , .		5
260	Impact of cross-phase modulation in coherent transmission systems. , 2010, , .		1
261	Analysis of non-linear impairments in 40 Gbaud PM DQPSK and D8PSK transmission., 2010,,.		1
262	$37~\mbox{Gbps}$ transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth. , 2010, , .		9
263	A novel rate allocation method for multilevel coded modulation. , 2010, , .		2
264	Full Characterization of Noise Figure Spectrum in a Single-Pumped Fiber Parametric Amplifier. , 2010, , .		0
265	Noise Figure Measurements in Phase-Insensitive and Phase-Sensitive Fiber Parametric Amplifier Cascade. , 2010, , .		1
266	OSNR Requirements for Self-Homodyne Coherent Systems. IEEE Photonics Technology Letters, 2010, 22, 91-93.	1.3	83
267	Raman-Induced Asymmetric Pump Noise Transfer in Fiber-Optical Parametric Amplifiers. IEEE Photonics Technology Letters, 2010, 22, 386-388.	1.3	6
268	Cancellation of Nonlinear Phase Distortion in Self-Homodyne Coherent Systems. IEEE Photonics Technology Letters, 2010, 22, 802-804.	1.3	28
269	Investigation of Transmission Impairments of 40-Gbaud, Two-, Four-, and Eight-Level RZ-DPSK. IEEE Photonics Technology Letters, 2010, 22, 1376-1378.	1.3	1
270	Format Conversion From 120-Gb/s RZ-D8PSK to 80-Gb/s RZ-DQPSK Through FWM-Based Optical Phase Erasure. IEEE Photonics Technology Letters, 2010, 22, 1817-1819.	1.3	7

#	Article	IF	CITATIONS
271	Phase-sensitive amplified DWDM DQPSK signals using free-running Lasers with 6-dB link SNR improvement over EDFA-based systems. , 2010, , .		9
272	A Novel Multilevel Coded Modulation Scheme for Fiber Optical Channel with Nonlinear Phase Noise. , 2010, , .		15
273	Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers. Optics Express, 2010, 18, 2884.	1.7	73
274	Detailed characterization of a†fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation. Optics Express, 2010, 18, 4130.	1.7	66
275	Modeling and measurement of the noise figure of a cascaded non-degenerate phase-sensitive parametric amplifier. Optics Express, 2010, 18, 14820.	1.7	51
276	Noise performance of optical fiber transmission links that use non-degenerate cascaded phase-sensitive amplifiers. Optics Express, 2010, 18, 15426.	1.7	87
277	Power Efficient Subcarrier Modulation for Intensity Modulated Channels. Optics Express, 2010, 18, 17913.	1.7	12
278	Bandwidth-efficient phase modulation techniques for Stimulated Brillouin Scattering suppression in fiber optic parametric amplifiers. Optics Express, 2010, 18, 18138.	1.7	65
279	Field-quadrature and photon-number correlations produced by parametric processes. Optics Express, 2010, 18, 19792.	1.7	31
280	Influence of self- and cross-phase modulation on 40 Gbaud dual polarization DQPSK/D8PSK signals in 10 Gbit/s OOK WDM systems. Optics Express, 2010, 18, 24178.	1.7	4
281	Joint Statistics and MLSD in Filtered Incoherent High-Speed Fiber-Optic Communications. Journal of Lightwave Technology, 2010, 28, 1564-1572.	2.7	10
282	On the Dimensionality of Multilevel Coded Modulation in the High SNR Regime. IEEE Communications Letters, 2010, 14, 1056-1058.	2.5	8
283	Noise figure non-reciprocity in fiber optical parametric amplifiers with zero-dispersion-wavelength variations. , 2010, , .		1
284	Convergence comparison of CMA and ICA for blind polarization demultiplexing of QPSK and 16-QAM signals. , 2010, , .		3
285	The impact of self-phase modulation on digital clock recovery in coherent optical communication. , 2010, , .		5
286	Operational regime of symbol-by-symbol phase noise estimation for POLMUX 16-QAM., 2010,,.		1
287	Constellation optimization for coherent optical transmission systems. , 2010, , .		0
288	Four-dimensional optimized constellations for coherent optical transmission systems., 2010,,.		17

#	Article	IF	CITATIONS
289	Intersymbol interference in DQPSK fibreâ€optic systems. European Transactions on Telecommunications, 2009, 20, 758-769.	1.2	o
290	Power-Efficient Modulation Formats in Coherent Transmission Systems. Journal of Lightwave Technology, 2009, 27, 5115-5126.	2.7	296
291	Which is the most power-efficient modulation format in optical links?. Optics Express, 2009, 17, 10814.	1.7	172
292	156-νs continuously tunable parametric delay line for a 40-Gb/s signal. Optics Express, 2009, 17, 11958.	1.7	30
293	Low-Cost Multiparameter Optical Performance Monitoring Based on Polarization Modulation. Journal of Lightwave Technology, 2009, 27, 128-138.	2.7	3
294	Benefits of Joint Statistics in MLSD-Equalized Transmission. IEEE Photonics Technology Letters, 2009, 21, 495-497.	1.3	7
295	Comparison of 112-Gb/s PM-RZ-DQPSK and PM-RZ-D8PSK in Terms of OSNR Requirement and Transmission Impairments. IEEE Photonics Technology Letters, 2009, 21, 1680-1682.	1.3	1
296	Analysis of a capacitive loaded buck converter. , 2009, , .		0
297	Experimental measuring of solitonic pulse stability for different configurations of the ring. Proceedings of SPIE, 2009, , .	0.8	0
298	A two paths mode-locked fiber laser. Proceedings of SPIE, 2009, , .	0.8	0
299	Unequal bit error probability in coherent QPSK fiber-optic systems using phase modulator based transmitters. European Transactions on Telecommunications, 2008, 19, 895-906.	1.2	5
300	Constellation diagram analysis of DPSK signal regeneration in a saturated parametric amplifier. Optics Express, 2008, 16, 5974.	1.7	39
301	Constellation diagram measurements of induced phase noise in a regenerating parametric amplifier. , 2008, , .		1
302	Fiber optic parametric amplifiers - properties, applications and challenges. , 2008, , .		0
303	Transmitter Comparison and Unequal Bit Error Probabilities in Coherent QPSK Systems., 2007,,.		3
304	Noise Statistics in Fiber Optical Parametric Amplifiers. Journal of Lightwave Technology, 2007, 25, 612-620.	2.7	14
305	Noise in Dual-Pumped Fiber-Optical Parametric Amplifiers: Theory and Experiments. Journal of Lightwave Technology, 2007, 25, 2837-2846.	2.7	15
306	Impact of Pump Phase-Modulation on the Bit-Error Rate in Fiber-Optical Parametric-Amplifier-Based Systems. IEEE Photonics Technology Letters, 2007, 19, 79-81.	1.3	8

#	Article	IF	Citations
307	Noise in Orthogonally Pumped Fiber-Optical Parametric Amplifiers. IEEE Photonics Technology Letters, 2007, 19, 88-90.	1.3	2
308	Field Trial of Polarization-Assisted Optical Performance Monitoring Operating in an 820 km WDM System. , 2006, , .		4
309	Impact of phase modulation and filter characteristics on dual-pumped fiber-optical parametric amplification. IEEE Photonics Technology Letters, 2006, 18, 439-441.	1.3	12
310	Gain and wavelength dependence of the noise-figure in fiber optical parametric amplification. IEEE Photonics Technology Letters, 2006, 18, 1255-1257.	1.3	30
311	Suppression of phase error in differential phase-shift keying data by amplitude regeneration. Optics Letters, 2006, 31, 1385.	1.7	25
312	Fiber communications using convolutional coding and bandwidth-efficient modulation. Optics Express, 2006, 14, 542.	1.7	11
313	Performance comparison of optical 8-ary differential phase-shift keying systems with different electrical decision schemes: Comment. Optics Express, 2006, 14, 1700.	1.7	2
314	Geometrical interpretation of second-order PMD. Journal of Lightwave Technology, 2006, 24, 643-651.	2.7	6
315	Semi-analytic saturation theory of fiber optical parametric amplifiers. Journal of Lightwave Technology, 2006, 24, 3471-3479.	2.7	36
316	Effects of Nonlinearities on PMD-Induced System Impairments. Journal of Lightwave Technology, 2006, 24, 4127-4137.	2.7	56
317	Trellis-Coded Modulation in PSK and DPSK Communications. , 2006, , .		12
318	Polarization mode dispersion impairments and mitigation in fiber optic transmission lines., 2005,,.		0
319	Evaluation of Approximative Methods for Rainflow Damage of Broad-Banded Non-Gaussian Random Loads. , 2005, , 79.		5
320	Penalties due to the combined effects of amplitude noise and timing-jitter with application to a 40 Gbit/s DM-soliton system. Optical Fiber Technology, 2005, 11, 20-33.	1.4	0
321	Correction to "Noise Characteristics of Fiber Optical Parametric Amplifiers― Journal of Lightwave Technology, 2005, 23, 2192-2192.	2.7	14
322	Phase-plane analysis of rational harmonic mode-locking in an erbium-doped fiber ring laser. IEEE Journal of Quantum Electronics, 2005, 41, 426-433.	1.0	0
323	Software-synchronized all-optical sampling for fiber communication systems. Journal of Lightwave Technology, 2005, 23, 1088-1099.	2.7	79
324	OTDM add-drop multiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber. Journal of Lightwave Technology, 2005, 23, 2654-2661.	2.7	32

#	Article	IF	Citations
325	Fiber optical parametric amplifier pulse source: theory and experiments. Journal of Lightwave Technology, 2005, 23, 4067-4073.	2.7	40
326	Fiber-optic parametric amplifier in a loop mirror configuration. IEEE Photonics Technology Letters, 2005, 17, 321-323.	1.3	10
327	Characterization of a self-phase-Modulation-based all-optical regeneration system. IEEE Photonics Technology Letters, 2005, 17, 2667-2669.	1.3	19
328	Performance Monitoring in Optical Networks Using Stokes Parameters. IEEE Photonics Technology Letters, 2004, 16, 686-688.	1.3	31
329	PMD impact on optical systems: Single- and multichannel effects. Journal of Optical and Fiber Communications Research, 2004, 1, 123-140.	0.5	4
330	0.5-Tb/s Eye-Diagram Measurement by Optical Sampling Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber. IEEE Photonics Technology Letters, 2004, 16, 566-568.	1.3	52
331	Noise Characteristics of Fiber Optical Parametric Amplifiers. Journal of Lightwave Technology, 2004, 22, 409-416.	2.7	109
332	The Statistics of Polarization-Dependent Loss in a Recirculating Loop. Journal of Lightwave Technology, 2004, 22, 968-976.	2.7	21
333	Quaternion Approach to PMD and PDL Phenomena in Optical Fiber Systems. Journal of Lightwave Technology, 2004, 22, 1137-1146.	2.7	28
334	Guest Editorial Special Issue on Polarization-Mode Dispersion. Journal of Lightwave Technology, 2004, 22, 951-952.	2.7	7
335	PMD impact on optical systems: Single- and multichannel effects. , 2004, , 198-215.		0
336	DM solitons in long-haul DWDM systems at 40 Gb/s with nonlinear interactions and PMD. IEEE Photonics Technology Letters, 2003, 15, 1372-1374.	1.3	6
337	Optimum receiver decision point in presence of PMD in fiber-optic communication systems. IEEE Photonics Technology Letters, 2003, 15, 1651-1653.	1.3	2
338	Statistics of PMD in recirculating loops. IEEE Photonics Technology Letters, 2003, 15, 1543-1545.	1.3	7
339	OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber. IEEE Photonics Technology Letters, 2003, 15, 1770-1772.	1.3	37
340	Third-order dispersion compensation using a phase modulator. Journal of Lightwave Technology, 2003, 21, 1188-1197.	2.7	13
341	PMD mitigation and receiver optimization to reduce PMD influence. , 2003, , .		0
342	Long-term automatic PMD compensation for 160â€Gbit/s RZ transmission. Electronics Letters, 2002, 38, 982.	0.5	17

#	Article	IF	Citations
343	A comparison between different PMD compensation techniques. Journal of Lightwave Technology, 2002, 20, 368-378.	2.7	166
344	Polarization-mode dispersion in high-speed fiber-optic transmission systems. Journal of Lightwave Technology, 2002, 20, 2204-2219.	2.7	97
345	Measurement of ultralow Gordon-Haus timing jitter in dispersion-managed soliton systems. IEEE Photonics Technology Letters, 2002, 14, 1097-1099.	1.3	1
346	Influences of polarization-mode dispersion on soliton transmission systems. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 575-590.	1.9	32
347	Robustness of dispersion-managed solitons to the polarization-mode dispersion in optical fibers. IEEE Photonics Technology Letters, 2001, 13, 121-123.	1.3	13
348	A comparison between NRZ and RZ data formats with respect to PMD-induced system degradation. IEEE Photonics Technology Letters, 2001, 13, 448-450.	1.3	68
349	Polarization-mode dispersion-induced outages in soliton transmission systems. IEEE Photonics Technology Letters, 2001, 13, 1079-1081.	1.3	9
350	Comparison of soliton robustness with respect to polarization-mode dispersion with first-order polarization-mode dispersion–compensated linear  systems. Optics Letters, 2001, 26, 672.	1.7	9
351	Probability density functions of the differential group delay in optical fiber communication systems. Journal of Lightwave Technology, 2001, 19, 324-331.	2.7	78
352	Pump–probe collision in optical fibers: four-wave-mixing induced frequency jump. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 1652.	0.9	3
353	Polarisation-mode dispersion induced outages in dispersion-managed soliton systems. Electronics Letters, 2001, 37, 1472.	0.5	4
354	Statistical analysis of soliton robustness to polarisation-mode dispersion. Electronics Letters, 2000, 36, 1575.	0.5	5
355	Polarization-mode dispersion measurements along installed optical fibers using gated backscattered light and a polarimeter. Journal of Lightwave Technology, 2000, 18, 897-904.	2.7	18
356	Long-term measurement of PMD and polarization drift in installed fibers. Journal of Lightwave Technology, 2000, 18, 941-951.	2.7	197
357	Analytical theory for PMD-compensation. IEEE Photonics Technology Letters, 2000, 12, 50-52.	1.3	60
358	Soliton robustness to the polarization-mode dispersion in optical fibers. IEEE Photonics Technology Letters, 2000, 12, 801-803.	1.3	32
359	Impact of PMD on four-wave-mixing-induced crosstalk in WDM systems. IEEE Photonics Technology Letters, 2000, 12, 1261-1263.	1.3	20
360	Measurement of the differential group delay in installed optical fibers using polarization multiplexed solitons. IEEE Photonics Technology Letters, 1999, 11, 593-595.	1.3	6

#	Article	IF	CITATIONS
361	Autocorrelation function of the polarization-mode dispersion vector. Optics Letters, 1999, 24, 939.	1.7	159
362	Polarization mode dispersion–induced pulse broadening in optical fibers. Optics Letters, 1998, 23, 688.	1.7	120
363	Four-wave mixing in fibers with randomly varying zero-dispersion wavelength. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 2269.	0.9	178
364	Soliton stability in optical fibers with polarization-mode dispersion. IEEE Photonics Technology Letters, 1998, 10, 376-378.	1.3	13
365	Polarization mode dispersion measurement using a Sagnac interferometer and a comparison with the fixed analyzer method. IEEE Photonics Technology Letters, 1998, 10, 997-999.	1.3	14
366	Soliton interaction penalty reduction by receiver filtering. IEEE Photonics Technology Letters, 1998, 10, 1042-1044.	1.3	10
367	Design guidelines of actively mode-locked fiber ring lasers. IEEE Photonics Technology Letters, 1998, 10, 1103-1105.	1.3	9
368	Polarization-division multiplexed solitons in optical fibers with polarization-mode dispersion. IEEE Photonics Technology Letters, 1998, 10, 1742-1744.	1.3	23
369	Fiber four-wave mixing demultiplexing with inherent parametric amplification. Journal of Lightwave Technology, 1997, 15, 2051-2058.	2.7	50
370	Polarization dependence and efficiency in a fiber four-wave mixing phase conjugator with orthogonal pump waves. IEEE Photonics Technology Letters, 1996, 8, 776-778.	1.3	22
371	Self-phase modulation in dispersion compensated optical fibre transmission systems. Optics Communications, 1996, 130, 153-162.	1.0	24
372	Cherenkov radiation emitted by solitons in optical fibers. Physical Review A, 1995, 51, 2602-2607.	1.0	704
373	Modulational instability in lossy optical fibers. Journal of the Optical Society of America B: Optical Physics, 1995, 12, 2071.	0.9	79
374	Optical fiber-grating compressors utilizing long fibers. Optics Communications, 1994, 112, 48-54.	1.0	7
375	Dark soliton pairs in fiber couplers. Optics Communications, 1994, 111, 116-122.	1.0	10
376	Radiationless optical solitons with oscillating tails. Optics Communications, 1994, 110, 540-544.	1.0	71
377	Soliton-like pulses governed by fourth order dispersion in optical fibers. Optics Communications, 1994, 104, 303-307.	1.0	109
378	Soliton instabilities and pulse compression in minimum dispersion fibers. IEEE Journal of Quantum Electronics, 1994, 30, 1831-1841.	1.0	8

#	ARTICLE	IF	CITATIONS
379	Ultrashort solitons at the minimum-dispersion wavelength: effects of fourth-order dispersion. Optics Letters, 1993, 18, 1388.	1.7	117
380	Modulational instability dynamics in a spatial focusing and temporal defocusing medium. Physical Review E, 1993, 47, 3617-3622.	0.8	12
381	Optical beams in saturable self-focusing media. Physical Review A, 1992, 46, 2726-2734.	1.0	103
382	Super-Gaussian approximation of the fundamental radial mode in nonlinear parabolic-index optical fibers. Journal of the Optical Society of America B: Optical Physics, 1992, 9, 1558.	0.9	29