InÃas M AraÃojo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3562820/publications.pdf

Version: 2024-02-01

279487 276539 1,707 45 23 41 citations h-index g-index papers 45 45 45 2646 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Developmental Cell, 2022, 57, 440-450.e7.	3.1	26
2	Coronal brain atlas in stereotaxic coordinates of the African spiny mouse, <i>Acomys cahirinus</i> Journal of Comparative Neurology, 2022, , .	0.9	1
3	Identification of new targets of S-nitrosylation in neural stem cells by thiol redox proteomics. Redox Biology, 2020, 32, 101457.	3.9	4
4	Extracellular electrophysiological based sensor to monitor cancer cells cooperative migration and cell-cell connections. Biosensors and Bioelectronics, 2019, 145, 111708.	5 . 3	7
5	S-Nitrosylation of Ras Mediates Nitric Oxide-Dependent Post-Injury Neurogenesis in a Seizure Model. Antioxidants and Redox Signaling, 2018, 28, 15-30.	2.5	13
6	The African spiny mouse (<i>Acomys</i> spp.) as an emerging model for development and regeneration. Laboratory Animals, 2018, 52, 565-576.	0.5	22
7	Neuronal Adenosine A2A Receptors Are Critical Mediators of Neurodegeneration Triggered by Convulsions. ENeuro, 2018, 5, ENEURO.0385-18.2018.	0.9	58
8	Caffeine Reverts Memory But Not Mood Impairment in a Depression-Prone Mouse Strain with Up-Regulated Adenosine A2A Receptor in Hippocampal Glutamate Synapses. Molecular Neurobiology, 2017, 54, 1552-1563.	1.9	55
9	Neuroproteomics Using Short GeLC-SWATH: From the Evaluation of Proteome Changes to the Clarification of Protein Function. Neuromethods, 2017, , 107-138.	0.2	7
10	Ultrasensitive gold micro-structured electrodes enabling the detection of extra-cellular long-lasting potentials in astrocytes populations. Scientific Reports, 2017, 7, 14284.	1.6	16
11	Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations. Frontiers in Neural Circuits, $2017,11,80.$	1.4	9
12	Calpastatin Overexpression Preserves Cognitive Function Following Seizures, While Maintaining Post-Injury Neurogenesis. Frontiers in Molecular Neuroscience, 2017, 10, 60.	1.4	5
13	Extracellular electrical recording of pH-triggered bursts in C6 glioma cell populations. Science Advances, 2016, 2, e1600516.	4.7	22
14	Performance assessment of polymer based electrodes for $\langle i \rangle$ in vitro $\langle i \rangle$ electrophysiological sensing: the role of the electrode impedance. Proceedings of SPIE, 2016, , .	0.8	3
15	An electrical method to measure low-frequency collective and synchronized cell activity using extracellular electrodes. Sensing and Bio-Sensing Research, 2016, 10, 1-8.	2.2	21
16	Ear wound regeneration in the African spiny mouse <i>Acomys cahirinus</i> . Regeneration (Oxford,) Tj ETQq0 0	0 rg.BT /O	verlock 10 Tf !
17	Involvement of calpains in adult neurogenesis: implications for stroke. Frontiers in Cellular Neuroscience, 2015, 9, 22.	1.8	25
18	Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-14.	1.9	17

#	Article	IF	CITATIONS
19	Sâ€nitrosation and neuronal plasticity. British Journal of Pharmacology, 2015, 172, 1468-1478.	2.7	18
20	Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling. Frontiers in Cellular Neuroscience, 2014, 8, 343.	1.8	29
21	Stimulation of Neural Stem Cell Proliferation by Inhibition of Phosphodiesterase 5. Stem Cells International, 2014, 2014, 1-13.	1.2	26
22	Evaluation of Proliferation of Neural Stem Cells In Vitro and In Vivo. Current Protocols in Stem Cell Biology, 2013, 24, Unit 2D.14.	3.0	15
23	Specificity in S-Nitrosylation: A Short-Range Mechanism for NO Signaling?. Antioxidants and Redox Signaling, 2013, 19, 1220-1235.	2.5	105
24	Evaluation of neurotoxic and neuroprotective pathways affected by antiepileptic drugs in cultured hippocampal neurons. Toxicology in Vitro, 2013, 27, 2193-2202.	1.1	8
25	Differential Contribution of the Guanylyl Cyclase-Cyclic GMP-Protein Kinase G Pathway to the Proliferation of Neural Stem Cells Stimulated by Nitric Oxide. NeuroSignals, 2013, 21, 1-13.	0.5	23
26	Regulation of Injury-Induced Neurogenesis by Nitric Oxide. Stem Cells International, 2012, 2012, 1-15.	1.2	19
27	Calpains and Delayed Calcium Deregulation in Excitotoxicity. Neurochemical Research, 2010, 35, 1966-1969.	1.6	25
28	Nitric Oxide Stimulates the Proliferation of Neural Stem Cells Bypassing the Epidermal Growth Factor Receptor. Stem Cells, 2010, 28, 1219-1230.	1.4	71
29	Regulation of catecholamine release and tyrosine hydroxylase in human adrenal chromaffin cells by interleukinâ€1β: role of neuropeptide Y and nitric oxide. Journal of Neurochemistry, 2009, 109, 911-922.	2.1	33
30	Adenosine A _{2A} receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Annals of Neurology, 2008, 63, 338-346.	2.8	159
31	Calpain activation is involved in early caspaseâ€independent neurodegeneration in the hippocampus following status epilepticus. Journal of Neurochemistry, 2008, 105, 666-676.	2.1	46
32	Neuropeptide Y stimulates retinal neural cell proliferation – involvement of nitric oxide. Journal of Neurochemistry, 2008, 105, 2501-2510.	2.1	46
33	Changes in calcium dynamics following the reversal of the sodium-calcium exchanger have a key role in AMPA receptor-mediated neurodegeneration via calpain activation in hippocampal neurons. Cell Death and Differentiation, 2007, 14, 1635-1646.	5.0	41
34	Intracellular signaling mechanisms mediating catecholamine release upon activation of NPY Y1receptors in mouse chromaffin cells. Journal of Neurochemistry, 2007, 103, 896-903.	2.1	16
35	Normal sensitivity to excitotoxicity in a transgenic Huntington's disease rat. Brain Research Bulletin, 2006, 69, 306-310.	1.4	12
36	Proteolysis of NR2B by calpain in the hippocampus of epileptic rats. NeuroReport, 2005, 16, 393-396.	0.6	32

#	Article	IF	CITATIONS
37	Early calpain-mediated proteolysis following AMPA receptor activation compromises neuronal survival in cultured hippocampal neurons. Journal of Neurochemistry, 2005, 92, 996-996.	2.1	0
38	Role of Nitric Oxide and Calpain Activation in Neuronal Death and Survival. CNS and Neurological Disorders, 2005, 4, 319-324.	4.3	34
39	Orexin loss in Huntington's disease. Human Molecular Genetics, 2005, 14, 39-47.	1.4	246
40	Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice. Neurobiology of Disease, 2005, 20, 744-751.	2.1	158
41	Early calpain-mediated proteolysis following AMPA receptor activation compromises neuronal survival in cultured hippocampal neurons. Journal of Neurochemistry, 2004, 91, 1322-1331.	2.1	46
42	Neurotoxicity Induced by Antiepileptic Drugs in Cultured Hippocampal Neurons: A Comparative Study between Carbamazepine, Oxcarbazepine, and Two New Putative Antiepileptic Drugs, BIA 2-024 and BIA 2-093. Epilepsia, 2004, 45, 1498-1505.	2.6	53
43	Nitric oxide inhibits complex I following AMPA receptor activation via peroxynitrite. NeuroReport, 2004, 15, 2007-2011.	0.6	6
44	Neuronal nitric oxide synthase proteolysis limits the involvement of nitric oxide in kainateâ€induced neurotoxicity in hippocampal neurons. Journal of Neurochemistry, 2003, 85, 791-800.	2.1	24
45	Neurotoxic/neuroprotective profile of carbamazepine, oxcarbazepine and two new putative antiepileptic drugs, BIA 2-093 and BIA 2-024. European Journal of Pharmacology, 2000, 406, 191-201.	1.7	45