InÃ^as M AraÃ^ojo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3562820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Orexin loss in Huntington's disease. Human Molecular Genetics, 2005, 14, 39-47.	1.4	246
2	Adenosine A _{2A} receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Annals of Neurology, 2008, 63, 338-346.	2.8	159
3	Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice. Neurobiology of Disease, 2005, 20, 744-751.	2.1	158
4	Specificity in S-Nitrosylation: A Short-Range Mechanism for NO Signaling?. Antioxidants and Redox Signaling, 2013, 19, 1220-1235.	2.5	105
5	Nitric Oxide Stimulates the Proliferation of Neural Stem Cells Bypassing the Epidermal Growth Factor Receptor. Stem Cells, 2010, 28, 1219-1230.	1.4	71
6	Ear wound regeneration in the African spiny mouse <i>Acomys cahirinus</i> . Regeneration (Oxford,) Tj ETQq0 0	0 rg₿T /O\	verlock 10 Tf
7	Neuronal Adenosine A2A Receptors Are Critical Mediators of Neurodegeneration Triggered by Convulsions. ENeuro, 2018, 5, ENEURO.0385-18.2018.	0.9	58
8	Caffeine Reverts Memory But Not Mood Impairment in a Depression-Prone Mouse Strain with Up-Regulated Adenosine A2A Receptor in Hippocampal Glutamate Synapses. Molecular Neurobiology, 2017, 54, 1552-1563.	1.9	55
9	Neurotoxicity Induced by Antiepileptic Drugs in Cultured Hippocampal Neurons: A Comparative Study between Carbamazepine, Oxcarbazepine, and Two New Putative Antiepileptic Drugs, BIA 2-024 and BIA 2-093. Epilepsia, 2004, 45, 1498-1505.	2.6	53
10	Early calpain-mediated proteolysis following AMPA receptor activation compromises neuronal survival in cultured hippocampal neurons. Journal of Neurochemistry, 2004, 91, 1322-1331.	2.1	46
11	Calpain activation is involved in early caspaseâ€independent neurodegeneration in the hippocampus following status epilepticus. Journal of Neurochemistry, 2008, 105, 666-676.	2.1	46
12	Neuropeptide Y stimulates retinal neural cell proliferation – involvement of nitric oxide. Journal of Neurochemistry, 2008, 105, 2501-2510.	2.1	46
13	Neurotoxic/neuroprotective profile of carbamazepine, oxcarbazepine and two new putative antiepileptic drugs, BIA 2-093 and BIA 2-024. European Journal of Pharmacology, 2000, 406, 191-201.	1.7	45
14	Changes in calcium dynamics following the reversal of the sodium-calcium exchanger have a key role in AMPA receptor-mediated neurodegeneration via calpain activation in hippocampal neurons. Cell Death and Differentiation, 2007, 14, 1635-1646.	5.0	41

15	Role of Nitric Oxide and Calpain Activation in Neuronal Death and Survival. CNS and Neurological Disorders, 2005, 4, 319-324.	4.3	34
16	Regulation of catecholamine release and tyrosine hydroxylase in human adrenal chromaffin cells by interleukinâ€1β: role of neuropeptide Y and nitric oxide. Journal of Neurochemistry, 2009, 109, 911-922.	2.1	33
17	Proteolysis of NR2B by calpain in the hippocampus of epileptic rats. NeuroReport, 2005, 16, 393-396.	0.6	32

18Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal
growth factor receptor signaling. Frontiers in Cellular Neuroscience, 2014, 8, 343.1.829

InÃ≜s M Araújo

#	Article	IF	CITATIONS
19	Stimulation of Neural Stem Cell Proliferation by Inhibition of Phosphodiesterase 5. Stem Cells International, 2014, 2014, 1-13.	1.2	26
20	Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Developmental Cell, 2022, 57, 440-450.e7.	3.1	26
21	Calpains and Delayed Calcium Deregulation in Excitotoxicity. Neurochemical Research, 2010, 35, 1966-1969.	1.6	25
22	Involvement of calpains in adult neurogenesis: implications for stroke. Frontiers in Cellular Neuroscience, 2015, 9, 22.	1.8	25
23	Neuronal nitric oxide synthase proteolysis limits the involvement of nitric oxide in kainateâ€induced neurotoxicity in hippocampal neurons. Journal of Neurochemistry, 2003, 85, 791-800.	2.1	24
24	Differential Contribution of the Guanylyl Cyclase-Cyclic GMP-Protein Kinase G Pathway to the Proliferation of Neural Stem Cells Stimulated by Nitric Oxide. NeuroSignals, 2013, 21, 1-13.	0.5	23
25	Extracellular electrical recording of pH-triggered bursts in C6 glioma cell populations. Science Advances, 2016, 2, e1600516.	4.7	22
26	The African spiny mouse (<i>Acomys</i> spp.) as an emerging model for development and regeneration. Laboratory Animals, 2018, 52, 565-576.	0.5	22
27	An electrical method to measure low-frequency collective and synchronized cell activity using extracellular electrodes. Sensing and Bio-Sensing Research, 2016, 10, 1-8.	2.2	21
28	Regulation of Injury-Induced Neurogenesis by Nitric Oxide. Stem Cells International, 2012, 2012, 1-15.	1.2	19
29	Sâ€nitrosation and neuronal plasticity. British Journal of Pharmacology, 2015, 172, 1468-1478.	2.7	18
30	Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-14.	1.9	17
31	Intracellular signaling mechanisms mediating catecholamine release upon activation of NPY Y1receptors in mouse chromaffin cells. Journal of Neurochemistry, 2007, 103, 896-903.	2.1	16
32	Ultrasensitive gold micro-structured electrodes enabling the detection of extra-cellular long-lasting potentials in astrocytes populations. Scientific Reports, 2017, 7, 14284.	1.6	16
33	Evaluation of Proliferation of Neural Stem Cells In Vitro and In Vivo. Current Protocols in Stem Cell Biology, 2013, 24, Unit 2D.14.	3.0	15
34	S-Nitrosylation of Ras Mediates Nitric Oxide-Dependent Post-Injury Neurogenesis in a Seizure Model. Antioxidants and Redox Signaling, 2018, 28, 15-30.	2.5	13
35	Normal sensitivity to excitotoxicity in a transgenic Huntington's disease rat. Brain Research Bulletin, 2006, 69, 306-310.	1.4	12
36	Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations. Frontiers in Neural Circuits, 2017, 11, 80.	1.4	9

InÃ≜s M Araújo

#	Article	IF	CITATIONS
37	Evaluation of neurotoxic and neuroprotective pathways affected by antiepileptic drugs in cultured hippocampal neurons. Toxicology in Vitro, 2013, 27, 2193-2202.	1.1	8
38	Neuroproteomics Using Short GeLC-SWATH: From the Evaluation of Proteome Changes to the Clarification of Protein Function. Neuromethods, 2017, , 107-138.	0.2	7
39	Extracellular electrophysiological based sensor to monitor cancer cells cooperative migration and cell-cell connections. Biosensors and Bioelectronics, 2019, 145, 111708.	5.3	7
40	Nitric oxide inhibits complex I following AMPA receptor activation via peroxynitrite. NeuroReport, 2004, 15, 2007-2011.	0.6	6
41	Calpastatin Overexpression Preserves Cognitive Function Following Seizures, While Maintaining Post-Injury Neurogenesis. Frontiers in Molecular Neuroscience, 2017, 10, 60.	1.4	5
42	Identification of new targets of S-nitrosylation in neural stem cells by thiol redox proteomics. Redox Biology, 2020, 32, 101457.	3.9	4
43	Performance assessment of polymer based electrodes for <i>in vitro</i> electrophysiological sensing: the role of the electrode impedance. Proceedings of SPIE, 2016, , .	0.8	3
44	Coronal brain atlas in stereotaxic coordinates of the African spiny mouse, <i>Acomys cahirinus</i> . Journal of Comparative Neurology, 2022, , .	0.9	1
45	Early calpain-mediated proteolysis following AMPA receptor activation compromises neuronal survival in cultured hippocampal neurons. Journal of Neurochemistry, 2005, 92, 996-996.	2.1	0