
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3562466/publications.pdf Version: 2024-02-01

ΖΗΛΟΙΙΙΝ ΗΛΝ

#	Article	IF	CITATIONS
1	Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nature Communications, 2013, 4, 2220.	5.8	328
2	Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nature Communications, 2020, 11, 3028.	5.8	294
3	Emerging energy and environmental applications of vertically-oriented graphenes. Chemical Society Reviews, 2015, 44, 2108-2121.	18.7	269
4	Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy and Environmental Science, 2021, 14, 1854-1896.	15.6	252
5	Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nature Communications, 2020, 11, 4181.	5.8	204
6	Anti-fouling graphene-based membranes for effective water desalination. Nature Communications, 2018, 9, 683.	5.8	197
7	NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization. Sensors and Actuators B: Chemical, 2007, 123, 107-113.	4.0	188
8	Structureâ€Controlled, Vertical Grapheneâ€Based, Binderâ€Free Electrodes from Plasmaâ€Reformed Butter Enhance Supercapacitor Performance. Advanced Energy Materials, 2013, 3, 1316-1323.	10.2	182
9	Atmospheric gas plasma–induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Molecular Biology of the Cell, 2014, 25, 1523-1531.	0.9	166
10	A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose. Biosensors and Bioelectronics, 2007, 23, 135-139.	5.3	165
11	RuO ₂ -coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17293-17301.	5.2	132
12	Applications and Nanotoxicity of Carbon Nanotubes and Graphene in Biomedicine. Journal of Nanomaterials, 2012, 2012, 1-19.	1.5	125
13	Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor. Nature Communications, 2017, 8, 14217.	5.8	122
14	Electrowetting Control of Cassie-to-Wenzel Transitions in Superhydrophobic Carbon Nanotube-Based Nanocomposites. ACS Nano, 2009, 3, 3031-3036.	7.3	120
15	Ultrasensitive and Stretchable Strain Sensors Based on Mazelike Vertical Graphene Network. ACS Applied Materials & Interfaces, 2018, 10, 36312-36322.	4.0	116
16	MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. NPG Asia Materials, 2016, 8, e268-e268.	3.8	113
17	Fabrication of Carbon Nanotubeâ ´Polyaniline Composites via Electrostatic Adsorption in Aqueous Colloids. Journal of Physical Chemistry C, 2007, 111, 4125-4131.	1.5	107
18	Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Chemical Engineering Journal, 2021, 409, 128158.	6.6	98

#	Article	IF	CITATIONS
19	Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nature Communications, 2022, 13, 2430.	5.8	98
20	Three-dimensional hierarchical NiCo ₂ O ₄ nanowire@Ni ₃ S ₂ nanosheet core/shell arrays for flexible asymmetric supercapacitors. Nanoscale, 2016, 8, 10686-10694.	2.8	97
21	Pre-lithiation of onion-like carbon/MoS ₂ nano-urchin anodes for high-performance rechargeable lithium ion batteries. Nanoscale, 2014, 6, 8884-8890.	2.8	93
22	Atomic-layer soft plasma etching of MoS2. Scientific Reports, 2016, 6, 19945.	1.6	93
23	Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon, 2013, 64, 230-236.	5.4	91
24	Mechanically-Assisted Electrochemical Production of Graphene Oxide. Chemistry of Materials, 2016, 28, 8429-8438.	3.2	91
25	Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Letters, 2021, 21, 823-832.	4.5	91
26	Plasma Breakâ€Down and Reâ€Build: Same Functional Vertical Graphenes from Diverse Natural Precursors. Advanced Materials, 2013, 25, 5638-5642.	11.1	80
27	Synergistic Fusion of Vertical Graphene Nanosheets and Carbon Nanotubes for Highâ€Performance Supercapacitor Electrodes. ChemSusChem, 2014, 7, 2317-2324.	3.6	77
28	MXene-Based Electrodes for Supercapacitor Energy Storage. Energy & Fuels, 2022, 36, 2390-2406.	2.5	67
29	Defect Healing and Enhanced Nucleation of Carbon Nanotubes by Low-Energy Ion Bombardment. Physical Review Letters, 2013, 110, 065501.	2.9	65
30	High-frequency supercapacitors based on doped carbon nanostructures. Carbon, 2018, 126, 305-312.	5.4	65
31	Mixedâ€Metal MOFâ€74 Templated Catalysts for Efficient Carbon Dioxide Capture and Methanation. Advanced Functional Materials, 2021, 31, 2007624.	7.8	65
32	Lithium sulfide-based cathode for lithium-ion/sulfur battery: Recent progress and challenges. Energy Storage Materials, 2019, 19, 1-15.	9.5	64
33	Development of an Ultra-Sensitive and Flexible Piezoresistive Flow Sensor Using Vertical Graphene Nanosheets. Nano-Micro Letters, 2020, 12, 109.	14.4	64
34	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	11.1	64
35	Carbon nanostructures for hard tissue engineering. RSC Advances, 2013, 3, 11058.	1.7	62
36	Synergies of vertical graphene and manganese dioxide in enhancing the energy density of carbon fibre-based structural supercapacitors. Composites Science and Technology, 2021, 201, 108568.	3.8	62

#	Article	IF	CITATIONS
37	Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction. Advanced Energy Materials, 2021, 11, 2100303.	10.2	61
38	Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. Journal of Chromatography A, 2014, 1360, 100-109.	1.8	60
39	Silica Nanoparticles Treated by Cold Atmospheric-Pressure Plasmas Improve the Dielectric Performance of Organic–Inorganic Nanocomposites. ACS Applied Materials & Interfaces, 2012, 4, 2637-2642.	4.0	59
40	Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2. Carbon, 2021, 172, 272-282.	5.4	59
41	Recent progress in plasma-assisted synthesis and modification of 2D materials. 2D Materials, 2018, 5, 032002.	2.0	58
42	Microstructural Engineering of Cathode Materials for Advanced Zincâ€lon Aqueous Batteries. Advanced Science, 2021, 8, 2002722.	5.6	58
43	Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation. Applied Physics Letters, 2007, 91, .	1.5	55
44	Nanohybrid TiN/Vertical graphene for high-performance supercapacitor applications. Energy Storage Materials, 2020, 26, 138-146.	9.5	54
45	Enhanced Electrochemical CO ₂ Reduction of Cu@Cu <i>_x</i> O Nanoparticles Decorated on 3D Vertical Graphene with Intrinsic sp ³ â€ŧype Defect. Advanced Functional Materials, 2020, 30, 1910118.	7.8	54
46	High-performance hierarchical MnO2/CNT electrode for multifunctional supercapacitors. Carbon, 2021, 184, 504-513.	5.4	54
47	Supercapacitors based on camphor-derived meso/macroporous carbon sponge electrodes with ultrafast frequency response for ac line-filtering. Journal of Materials Chemistry A, 2015, 3, 14105-14108.	5.2	52
48	Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries. NPG Asia Materials, 2016, 8, e286-e286.	3.8	52
49	Superhydrophobic amorphous carbon/carbon nanotube nanocomposites. Applied Physics Letters, 2009, 94, .	1.5	51
50	MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes. NPG Asia Materials, 2014, 6, e140-e140.	3.8	51
51	Carbon fiber reinforced Zn–MnO2 structural composite batteries. Composites Science and Technology, 2021, 209, 108787.	3.8	49
52	WO ₃ nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 4596-4603.	5.2	47
53	Controlled synthesis of a large fraction of metallic single-walled carbon nanotube and semiconducting carbon nanowire networks. Nanoscale, 2011, 3, 3214.	2.8	45
54	Plasma-enabled sustainable elemental lifecycles: honeycomb-derived graphenes for next-generation biosensors and supercapacitors. Green Chemistry, 2015, 17, 2164-2171.	4.6	45

#	Article	IF	CITATIONS
55	Uniform, Dense Arrays of Vertically Aligned, Large-Diameter Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 6018-6024.	6.6	43
56	A vertical graphene enhanced Zn–MnO ₂ flexible battery towards wearable electronic devices. Journal of Materials Chemistry A, 2021, 9, 575-584.	5.2	43
57	Valence Alignment of Mixed Ni–Fe Hydroxide Electrocatalysts through Preferential Templating on Graphene Edges for Enhanced Oxygen Evolution. ACS Nano, 2020, 14, 11327-11340.	7.3	42
58	Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing. Chemical Communications, 2013, 49, 2861.	2.2	41
59	Bridging NiCo layered double hydroxides and Ni3S2 for bifunctional electrocatalysts: The role of vertical graphene. Chemical Engineering Journal, 2021, 415, 129048.	6.6	39
60	Pt Single Atom Electrocatalysts at Graphene Edges for Efficient Alkaline Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	7.8	38
61	Atomic Co decorated free-standing graphene electrode assembly for efficient hydrogen peroxide production in acid. Energy and Environmental Science, 2022, 15, 1172-1182.	15.6	37
62	Vertical graphene array for efficient electrocatalytic reduction of oxygen to hydrogen peroxide. Nano Energy, 2022, 96, 107046.	8.2	37
63	Atmosphericâ€Pressure Plasma―and TRAILâ€Induced Apoptosis in TRAILâ€Resistant Colorectal Cancer Cells. Plasma Processes and Polymers, 2015, 12, 574-582.	1.6	35
64	Improving thermal and electrical stability of silver nanowire network electrodes through integrating graphene oxide intermediate layers. Journal of Colloid and Interface Science, 2020, 566, 375-382.	5.0	35
65	Single-Step, Plasma-Enabled Reforming of Natural Precursors into Vertical Graphene Electrodes with High Areal Capacitance. ACS Sustainable Chemistry and Engineering, 2015, 3, 544-551.	3.2	34
66	SWCNT Networks on Nanoporous Silica Catalyst Support: Morphological and Connectivity Control for Nanoelectronic, Gas-Sensing, and Biosensing Devices. ACS Nano, 2012, 6, 5809-5819.	7.3	32
67	Tuneable fluidics within graphene nanogaps for water purification and energy storage. Nanoscale Horizons, 2017, 2, 89-98.	4.1	32
68	UDP-Glycosyltransferase Genes in the Striped Rice Stem Borer, Chilo suppressalis (Walker), and Their Contribution to Chlorantraniliprole Resistance. International Journal of Molecular Sciences, 2019, 20, 1064.	1.8	32
69	Revealing ion transport in supercapacitors with Sub-2 nm two-dimensional graphene channels. Energy Storage Materials, 2020, 31, 64-71.	9.5	31
70	Low-temperature plasma assisted growth of vertical graphene for enhancing carbon fibre/epoxy interfacial strength. Composites Science and Technology, 2019, 184, 107867.	3.8	30
71	Controlled electronic transport in single-walled carbon nanotube networks: Selecting electron hopping and chemical doping mechanisms. Applied Physics Letters, 2010, 96, 233115.	1.5	29
72	Uniform Polypyrrole Layer-Coated Sulfur/Graphene Aerogel via the Vapor-Phase Deposition Technique as the Cathode Material for Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5958-5967.	4.0	29

#	Article	IF	CITATIONS
73	Electro-polymerized polypyrrole film for fabrication of flexible and slurry-free polypyrrole-sulfur-polypyrrole sandwich electrode for the lithium-sulfur battery. Journal of Power Sources, 2019, 437, 226925.	4.0	27
74	Direct plasma printing of nano-gold from an inorganic precursor. Journal of Materials Chemistry C, 2019, 7, 6369-6374.	2.7	27
75	Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO ₂ (GeO ₂) _{0.13} /G anodes. Nanoscale, 2014, 6, 15020-15028.	2.8	26
76	Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors. Carbon, 2015, 91, 386-394.	5.4	26
77	Rational design of stable sulfur vacancies in molybdenum disulfide for hydrogen evolution. Journal of Catalysis, 2020, 382, 320-328.	3.1	26
78	Hybrid graphite film–carbon nanotube platform for enzyme immobilization and protection. Carbon, 2013, 65, 287-295.	5.4	25
79	Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical Treatment to Tune the Selectivity of CO ₂ Reduction toward Valuable Products. ACS Catalysis, 2022, 12, 4792-4805.	5.5	24
80	Plasma nanofabrication and nanomaterials safety. Journal Physics D: Applied Physics, 2011, 44, 174019.	1.3	22
81	Effect of hydrophilicity of carbon nanotube arrays on the release rate and activity of recombinant human bone morphogenetic protein-2. Nanotechnology, 2011, 22, 295712.	1.3	21
82	Plasma Enabled Synthesis and Processing of Materials for Lithiumâ€ion Batteries. Advanced Materials Technologies, 2018, 3, 1800070.	3.0	21
83	Impact of Micropores and Dopants to Mitigate Lithium Polysulfides Shuttle over High Surface Area of ZIF-8 Derived Nanoporous Carbons. ACS Applied Energy Materials, 2020, 3, 5523-5532.	2.5	21
84	Performance degradation and mitigation strategies of silver nanowire networks: a review. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 435-459.	6.8	21
85	Biomimetic Ultraflexible Piezoresistive Flow Sensor Based on Graphene Nanosheets and PVA Hydrogel. Advanced Materials Technologies, 2022, 7, 2100783.	3.0	21
86	A facile approach to tailor electrocatalytic properties of MnO2 through tuning phase transition, surface morphology and band structure. Chemical Engineering Journal, 2022, 438, 135561.	6.6	21
87	Highly Selective Metalâ€Free Electrochemical Production of Hydrogen Peroxide on Functionalized Vertical Graphene Edges. Small, 2022, 18, e2105082.	5.2	20
88	Deterministic control of structural and optical properties of plasma-grown vertical graphene nanosheet networks via nitrogen gas variation. Optical Materials Express, 2012, 2, 700.	1.6	19
89	Carbon fibre electrodes for ultra long cycle life pseudocapacitors by engineering the nano-structure of vertical graphene and manganese dioxides. Carbon, 2021, 177, 260-270.	5.4	19
90	High-Voltage Insulation Organic-Inorganic Nanocomposites by Plasma Polymerization. Materials, 2014, 7, 563-575.	1.3	18

#	Article	IF	CITATIONS
91	3-Orders-of-magnitude density control of single-walled carbon nanotube networks by maximizing catalyst activation and dosing carbon supply. Nanoscale, 2011, 3, 4848.	2.8	16
92	Creating ionic pathways in solid-state polymer electrolyte by using PVA-coated carbon nanofibers. Composites Science and Technology, 2021, 207, 108710.	3.8	16
93	Electronic conductance of ion implanted and plasma modified polymers. Applied Physics Letters, 2007, 91, .	1.5	15
94	Organic/Hybrid Nanoparticles and Singleâ€Walled Carbon Nanotubes: Preparation Methods and Chiral Applications. Chirality, 2014, 26, 683-691.	1.3	15
95	Plasma Polymer-coated on Nanoparticles to Improve Dielectric and Electrical Insulation Properties of Nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 548-555.	1.8	15
96	Time-dependent electrical double layer with blocking electrode. Applied Physics Letters, 2009, 94, .	1.5	14
97	Heating and Plasma Sheath Effects in Lowâ€Temperature, Plasmaâ€Assisted Growth of Carbon Nanofibers. Plasma Processes and Polymers, 2011, 8, 386-400.	1.6	14
98	Designing Atmospheric-Pressure Plasma Sources for Surface Engineering of Nanomaterials. Plasma Chemistry and Plasma Processing, 2013, 33, 479-490.	1.1	14
99	Emerging Stem Cell Controls: Nanomaterials and Plasma Effects. Journal of Nanomaterials, 2013, 2013, 1-15.	1.5	14
100	Gel polymer dominated ion charging mechanisms within graphene nanochannels. Journal of Power Sources, 2022, 541, 231684.	4.0	14
101	Self-organization in arrays of surface-grown nanoparticles: characterization, control, driving forces. Journal Physics D: Applied Physics, 2011, 44, 174020.	1.3	13
102	Controlled electroluminescence of n-ZnMgO/p-GaN light-emitting diodes. Applied Physics Letters, 2012, 101, .	1.5	13
103	High Pseudocapacitive Performance of MnO ₂ Nanowires on Recyclable Electrodes. ChemSusChem, 2016, 9, 1020-1026.	3.6	13
104	Hierarchical multilevel arrays of self-assembled gold nanoparticles: Control of resistivity-temperature dependence. Applied Physics Letters, 2010, 97, 163109.	1.5	12
105	Plasma-Enabled Carbon Nanostructures for Early Diagnosis of Neurodegenerative Diseases. Materials, 2014, 7, 4896-4929.	1.3	12
106	Surface Functionalization of Electrodes and Synthesis of Dual-Phase Solid Electrolytes for Structural Supercapacitors. ACS Applied Materials & Interfaces, 2022, 14, 30857-30871.	4.0	12
107	Multifunctional graphene micro-islands: Rapid, low-temperature plasma-enabled synthesis and facile integration for bioengineering and genosensing applications. Biosensors and Bioelectronics, 2017, 89, 437-443.	5.3	11
108	Control of dense carbon nanotube arrays via hierarchical multilayer catalyst. Applied Physics Letters, 2011, 99, .	1.5	10

#	Article	IF	CITATIONS
109	Biological Application of Carbon Nanotubes and Graphene. , 2014, , 279-312.		10
110	Carbon nanotubes on nanoporous alumina: from surface mats to conformal pore filling. Nanoscale Research Letters, 2014, 9, 390.	3.1	10
111	Protein retention on plasma-treated hierarchical nanoscale gold-silver platform. Scientific Reports, 2015, 5, 13379.	1.6	10
112	Oxygen vacancies and band gap engineering of vertically aligned MnO2 porous nanosheets for efficient oxygen evolution reaction. Surfaces and Interfaces, 2021, 26, 101398.	1.5	10
113	Rejection of harsh pH saline solutions using graphene membranes. Carbon, 2021, 171, 240-247.	5.4	9
114	XPS studies on aluminum ions modified polyimide with the PIII technique. Journal of Applied Physics, 2007, 101, 053301.	1.1	8
115	Note: Rapid reduction of graphene oxide paper by glow discharge plasma. Review of Scientific Instruments, 2015, 86, 056101.	0.6	8
116	Electrical conductivity of poly(ethylene terephthalate) modified by titanium plasma. Journal of Applied Polymer Science, 2008, 107, 3332-3336.	1.3	7
117	Ambient air synthesis of multi-layer CVD graphene films for low-cost, efficient counter electrode material in dye-sensitized solar cells. FlatChem, 2018, 8, 1-8.	2.8	7
118	Polymeric piezoresistive airflow sensor to monitor respiratory patterns. Journal of the Royal Society Interface, 2021, 18, 20210753.	1.5	7
119	Surface insulation performance of epoxy resin/silica nanocomposite material. , 2011, , .		6
120	Redoxâ€mediated proton transport of twoâ€dimensional polyanilineâ€based nanochannels for fast capacitive performance. , 2022, 1, .		6
121	STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF Al -DOPED ZnO TRANSPARENT CONDUCTING OXIDE FOR SOLAR CELL APPLICATIONS. Functional Materials Letters, 2011, 04, 401-405.	0.7	5
122	Physisorption-induced electron scattering on the surface of carbon-metal core-shell nanowire arrays for hydrogen sensing. Applied Physics Letters, 2013, 102, .	1.5	5
123	Large Arrays and Networks of Carbon Nanotubes: Morphology Control by Process Parameters. , 0, , .		5
124	Conformal carbon coating on WS2 nanotubes for excellent electrochemical performance of lithium-ion batteries. Nanotechnology, 2019, 30, 035401.	1.3	5
125	Effective photoluminescence modification of ZnO nanocombs by plasma immersion ion implantation. , 2008, , .		4
126	Dewetting of polymer films by ion implantation. European Physical Journal E, 2009, 28, 273-278.	0.7	4

#	Article	IF	CITATIONS
127	Different Nanostructures From Different Plasmas: Nanoflowers and Nanotrees on Silicon. IEEE Transactions on Plasma Science, 2011, 39, 2796-2797.	0.6	4
128	Reinforced insulation properties of epoxy resin/SiO ₂ nanocomposites by atmospheric pressure plasma modification. , 2012, , .		4
129	Current Control in the Magnetron Systems for Nanofabrication: A Comparison. IEEE Transactions on Plasma Science, 2012, 40, 1094-1097.	0.6	4
130	Characteristics of Epoxy Resin/SiO ₂ Nanocomposite Insulation: Effects of Plasma Surface Treatment on the Nanoparticles. Journal of Nanoscience and Nanotechnology, 2013, 13, 3371-3376.	0.9	4
131	Electric field modulated ion-sieving effects of graphene oxide membranes. Journal of Materials Chemistry A, 2021, 9, 244-253.	5.2	4
132	Ti–PS nanocomposites by plasma immersion ion implantation and deposition. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 496-501.	0.6	3
133	Structure and wetting properties of metal polymer nanocomposites. International Journal of Nanotechnology, 2009, 6, 653.	0.1	3
134	Hybrid Carbon-Based Nanostructured Platforms for the Advanced Bioreactors. Journal of Nanoscience and Nanotechnology, 2015, 15, 10074-10090.	0.9	2
135	Electrodeposited cobalt sulfide on a vertical graphene nanocomposite for high-performance supercapacitors. New Journal of Chemistry, 2021, 45, 20249-20256.	1.4	2
136	Passivation layer on polyimide deposited by combined plasma immersion ion implantation and deposition and cathodic vacuum arc technique. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 411-414.	0.9	1
137	Structural and wetting properties of metal polymer nanocomposites. , 2008, , .		1
138	Control of density of self-organized carbon nanotube arrays by catalyst pretreatment through plasma immersion ion implantation. Journal of Applied Physics, 2011, 110, 094303.	1.1	1
139	Dielectric performance of nanocomposites synthesized by poly(ethylene oxide)-like film coated silica nanoparticles by plasma polymerization. , 2013, , .		1
140	Controlled Growth of Singleâ€Walled Carbon Nanotube Networks by Catalyst Interfacial Diffusion. Advanced Materials Interfaces, 2014, 1, 1300151.	1.9	1
141	Fabrication of embedded conductive layer in polymer by plasma immersion ion implantation. , 2006, , .		0
142	Initial growth of conducting island-like structure on insulating polymer substrate. , 2008, , .		0