List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3562045/publications.pdf Version: 2024-02-01

	36691	34195
13,403	53	103
citations	h-index	g-index
234	234	13189
docs citations	times ranked	citing authors
	13,403 citations 234 docs citations	13,40353citationsh-index234234docs citationstimes ranked

KELLY D FOOTE

#	Article	IF	CITATIONS
1	Cognitive subtypes in individuals with essential tremor seeking deep brain stimulation. Clinical Neuropsychologist, 2022, 36, 1705-1727.	1.5	10
2	Distinct Roles of the Human Subthalamic Nucleus and Dorsal Pallidum in Parkinson's Disease Impulsivity. Biological Psychiatry, 2022, 91, 370-379.	0.7	3
3	Connectomic analysis of unilateral dual-lead thalamic deep brain stimulation for treatment of multiple sclerosis tremor. Brain Communications, 2022, 4, fcac063.	1.5	2
4	Deep brain stimulation for the treatment of tremor. Journal of the Neurological Sciences, 2022, 435, 120190.	0.3	12
5	Suppression of Axial Tremor by Deep Brain Stimulation in Patients with Essential Tremor: Effects on Gait and Balance Measures. Tremor and Other Hyperkinetic Movements, 2022, 12, .	1.1	1
6	Deep brain stimulation for obsessive–compulsive disorder: a crisis of access. Nature Medicine, 2022, 28, 1529-1532.	15.2	36
7	Basal Ganglia Pathways Associated With Therapeutic Pallidal Deep Brain Stimulation for Tourette Syndrome. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 961-972.	1.1	12
8	Globus Pallidus Internus (GPi) Deep Brain Stimulation for Parkinson's Disease: Expert Review and Commentary. Neurology and Therapy, 2021, 10, 7-30.	1.4	28
9	Pallidal Connectivity Profiling of Stimulationâ€Induced Dyskinesia in Parkinson's Disease. Movement Disorders, 2021, 36, 380-388.	2.2	18
10	Brain structures and networks responsible for stimulationâ€induced memory flashbacks during forniceal deep brain stimulation for Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 777-787.	0.4	23
11	Functional imaging of the brainstem during visually-guided motor control reveals visuomotor regions in the pons and midbrain. NeuroImage, 2021, 226, 117627.	2.1	6
12	Closed-Loop Deep Brain Stimulation to Treat Medication-Refractory Freezing of Gait in Parkinson's Disease. Frontiers in Human Neuroscience, 2021, 15, 633655.	1.0	24
13	The Decline of Deep Brain Stimulation for Obsessive–Compulsive Disorder Following FDA Humanitarian Device Exemption Approval. Frontiers in Surgery, 2021, 8, 642503.	0.6	21
14	Mapping autonomic, mood and cognitive effects of hypothalamic region deep brain stimulation. Brain, 2021, 144, 2837-2851.	3.7	14
15	Comparative connectivity correlates of dystonic and essential tremor deep brain stimulation. Brain, 2021, 144, 1774-1786.	3.7	47
16	Double blind randomized controlled trial of deep brain stimulation for obsessive-compulsive disorder: Clinical trial design. Contemporary Clinical Trials Communications, 2021, 22, 100785.	0.5	10
17	Home Health Management of Parkinson Disease Deep Brain Stimulation. JAMA Neurology, 2021, 78, 972.	4.5	13
18	Time for a New 3-D Image for Globus Pallidus Internus Deep Brain Stimulation Targeting and Programming. Journal of Parkinson's Disease, 2021, 11, 1881-1885.	1.5	2

#	Article	IF	CITATIONS
19	Effect of Age on Clinical Trial Outcome in Participants with Probable Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 82, 1243-1257.	1.2	4
20	Restriction of Access to Deep Brain Stimulation for Refractory OCD: Failure to Apply the Federal Parity Act. Frontiers in Psychiatry, 2021, 12, 706181.	1.3	9
21	Suppression and Rebound of Pallidal Beta Power: Observation Using a Chronic Sensing DBS Device. Frontiers in Human Neuroscience, 2021, 15, 749567.	1.0	8
22	Wearable sensor-driven responsive deep brain stimulation for essential tremor. Brain Stimulation, 2021, 14, 1434-1443.	0.7	27
23	A novel local field potential-based functional approach for targeting the centromedian-parafascicular complex for deep brain stimulation. NeuroImage: Clinical, 2021, 30, 102644.	1.4	4
24	Connectivity correlates to predict essential tremor deep brain stimulation outcome: Evidence for a common treatment pathway. NeuroImage: Clinical, 2021, 32, 102846.	1.4	27
25	Patient, Caregiver, and Decliner Perspectives on Whether to Enroll in Adaptive Deep Brain Stimulation Research. Frontiers in Neuroscience, 2021, 15, 734182.	1.4	4
26	Postmortem Dissections of Common Targets for Lesion and Deep Brain Stimulation Surgeries. Neurosurgery, 2020, 86, 860-872.	0.6	8
27	An International Survey of Deep Brain Stimulation Utilization in Asia and Oceania: The DBS Think Tank East. Frontiers in Human Neuroscience, 2020, 14, 162.	1.0	18
28	Secondary Worsening Following DYT1 Dystonia Deep Brain Stimulation: A Multi-country Cohort. Frontiers in Human Neuroscience, 2020, 14, 242.	1.0	11
29	Long-term Parkinson's disease quality of life after staged DBS: STN vs GPi and first vs second lead. Npj Parkinson's Disease, 2020, 6, 13.	2.5	15
30	Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome. Brain, 2020, 143, 2607-2623.	3.7	50
31	Chronic embedded cortico-thalamic closed-loop deep brain stimulation for the treatment of essential tremor. Science Translational Medicine, 2020, 12, .	5.8	86
32	The UF Deep Brain Stimulation Cognitive Rating Scale (DBS-CRS): Clinical Decision Making, Validity, and Outcomes. Frontiers in Human Neuroscience, 2020, 14, 578216.	1.0	6
33	STN Versus GPi Deep Brain Stimulation for Action and Rest Tremor in Parkinson's Disease. Frontiers in Human Neuroscience, 2020, 14, 578615.	1.0	22
34	Cognitive Outcomes for Essential Tremor Patients Selected for Thalamic Deep Brain Stimulation Surgery Through Interdisciplinary Evaluations. Frontiers in Human Neuroscience, 2020, 14, 578348.	1.0	7
35	Quantitative Separation of Tremor and Ataxia in Essential Tremor. Annals of Neurology, 2020, 88, 375-387.	2.8	9
36	Letter: Evaluation and Surgical Treatment of Functional Neurosurgery Patients With Implanted Deep Brain Stimulation and Vagus Nerve Stimulation Pulse Generators During the COVID-19 Pandemic. Neurosurgery, 2020, 87, E222-E226.	0.6	8

#	Article	IF	CITATIONS
37	Florida research open-source synchronization tool (FROST) for electrophysiology experiments. Journal of Neuroscience Methods, 2020, 341, 108800.	1.3	5
38	Neurophysiological Correlates of Gait in the Human Basal Ganglia and the PPN Region in Parkinson's Disease. Frontiers in Human Neuroscience, 2020, 14, 194.	1.0	20
39	Motor outcomes and adverse effects of deep brain stimulation for dystonic tremor: A systematic review. Parkinsonism and Related Disorders, 2020, 76, 32-41.	1.1	11
40	Differentiating tic electrophysiology from voluntary movement in the human thalamocortical circuit. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 533-539.	0.9	27
41	Three-Year Gait and Axial Outcomes of Bilateral STN and CPi Parkinson's Disease Deep Brain Stimulation. Frontiers in Human Neuroscience, 2020, 14, 1.	1.0	83
42	Longitudinal follow-up with VIM thalamic deep brain stimulation for dystonic or essential tremor. Neurology, 2020, 94, e1073-e1084.	1.5	55
43	Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes. Expert Review of Neurotherapeutics, 2020, 20, 319-331.	1.4	22
44	Functional and Structural Connectivity Patterns Associated with Clinical Outcomes in Deep Brain Stimulation of the Globus Pallidus Internus for Generalized Dystonia. American Journal of Neuroradiology, 2020, 41, 508-514.	1.2	39
45	A pooled meta-analysis of GPi and STN deep brain stimulation outcomes for cervical dystonia. Journal of Neurology, 2020, 267, 1278-1290.	1.8	29
46	Parkinsonian Beta Dynamics during Rest and Movement in the Dorsal Pallidum and Subthalamic Nucleus. Journal of Neuroscience, 2020, 40, 2859-2867.	1.7	38
47	Long-term clinical outcomes of bilateral GPi deep brain stimulation in advanced Parkinson's disease: 5 years and beyond. Journal of Neurosurgery, 2020, , 1-10.	0.9	8
48	Parkinson's disease motor subtypes and bilateral GPi deep brain stimulation: One-year outcomes. Parkinsonism and Related Disorders, 2020, 75, 7-13.	1.1	15
49	Subthalamic nucleus deep brain stimulation with a multiple independent constant current-controlled device in Parkinson's disease (INTREPID): a multicentre, double-blind, randomised, sham-controlled study. Lancet Neurology, The, 2020, 19, 491-501.	4.9	88
50	Dysarthria and Speech Intelligibility Following Parkinson's Disease Globus Pallidus Internus Deep Brain Stimulation. Journal of Parkinson's Disease, 2020, 10, 1493-1502.	1.5	8
51	Lead Repositioning Guided by Both Physiology and Atlas Based Targeting in Tourette Deep Brain Stimulation. Tremor and Other Hyperkinetic Movements, 2020, 10, 18.	1.1	3
52	Brittle Dyskinesia Following STN but not GPi Deep Brain Stimulation. Tremor and Other Hyperkinetic Movements, 2020, 4, 242.	1.1	25
53	Brain Atrophy Following Deep Brain Stimulation: Management of a Moving Target. Tremor and Other Hyperkinetic Movements, 2020, 10, 46.	1.1	1
54	Changes in Midline Tremor and Gait Following Deep Brain Stimulation for Essential Tremor. Tremor and Other Hyperkinetic Movements, 2020, 9, .	1.1	0

#	Article	IF	CITATIONS
55	Fornix-Region Deep Brain Stimulation–Induced Memory Flashbacks in Alzheimer's Disease. New England Journal of Medicine, 2019, 381, 783-785.	13.9	36
56	Square Biphasic Pulse Deep Brain Stimulation for Parkinson's Disease: The BiP-PD Study. Frontiers in Human Neuroscience, 2019, 13, 368.	1.0	11
57	The Functional Role of Thalamocortical Coupling in the Human Motor Network. Journal of Neuroscience, 2019, 39, 8124-8134.	1.7	28
58	Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1078-1090.	0.9	81
59	Importance of the initial response to GPi deep brain stimulation in dystonia: A nine year quality of life study. Parkinsonism and Related Disorders, 2019, 64, 249-255.	1.1	24
60	Gait worsening and the microlesion effect following deep brain stimulation for essential tremor. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 913-919.	0.9	9
61	Benefits and risks of unilateral and bilateral ventral intermediate nucleus deep brain stimulation for axial essential tremor symptoms. Parkinsonism and Related Disorders, 2019, 60, 126-132.	1.1	37
62	Microsurgical anatomy of the subthalamic nucleus: correlating fiber dissection results with 3-T magnetic resonance imaging using neuronavigation. Journal of Neurosurgery, 2019, 130, 716-732.	0.9	22
63	DBS Revision Surgery: Indications and Nuances. , 2019, , 91-104.		1
64	Changes in Midline Tremor and Gait Following Deep Brain Stimulation for Essential Tremor. Tremor and Other Hyperkinetic Movements, 2019, 9, .	1.1	0
65	Deep Brain Stimulation associated gliosis: A post-mortem study. Parkinsonism and Related Disorders, 2018, 54, 51-55.	1.1	20
66	Efficacy and Safety of Deep Brain Stimulation in Tourette Syndrome. JAMA Neurology, 2018, 75, 353.	4.5	186
67	Deep Brain Stimulation for Tremor. , 2018, , 919-930.		2
68	Physiological effects of subthalamic nucleus deep brain stimulation surgery in cervical dystonia. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1296-1300.	0.9	11
69	A method for pre-operative single-subject thalamic segmentation based on probabilistic tractography for essential tremor deep brain stimulation. Neuroradiology, 2018, 60, 303-309.	1.1	35
70	Segmentation of the Globus Pallidus Internus Using Probabilistic Diffusion Tractography for Deep Brain Stimulation Targeting in Parkinson Disease. American Journal of Neuroradiology, 2018, 39, 1127-1134.	1.2	39
71	Neuromedicine Service and Science Hub Model. JAMA Neurology, 2018, 75, 271.	4.5	6
72	Creating neural "co-processors―to explore treatments for neurological disorders. , 2018, , .		7

Creating neural $\hat{a} {\in} \infty$ co-processors $\hat{a} {\in} {\bullet} to$ explore treatments for neurological disorders. , 2018, , . 72

#	Article	IF	CITATIONS
73	Report of a patient undergoing chronic responsive deep brain stimulation for Tourette syndrome: proof of concept. Journal of Neurosurgery, 2018, 129, 308-314.	0.9	78
74	Ventral Intermediate Nucleus Versus Zona Incerta Region Deep Brain Stimulation in Essential Tremor. Movement Disorders Clinical Practice, 2018, 5, 75-82.	0.8	46
75	Structural connectivity–based segmentation of the thalamus and prediction of tremor improvement following thalamic deep brain stimulation of the ventral intermediate nucleus. NeuroImage: Clinical, 2018, 20, 1266-1273.	1.4	60
76	Globus pallidus internus deep brain stimulation induces tremor in Parkinson's disease: A paradoxical phenomenon. Journal of the Neurological Sciences, 2018, 392, 102-104.	0.3	4
77	Introduction. Deep brain stimulation in 2018. Neurosurgical Focus, 2018, 45, E1.	1.0	1
78	Editorial. Deep brain stimulation for refractory posttraumatic stress disorder. Neurosurgical Focus, 2018, 45, E17.	1.0	1
79	Non-motor Characterization of the Basal Ganglia: Evidence From Human and Non-human Primate Electrophysiology. Frontiers in Neuroscience, 2018, 12, 385.	1.4	42
80	Deep Brain Stimulation Targeting the Fornix for Mild Alzheimer Dementia (the ADvance Trial): A Two Year Follow-up Including Results of Delayed Activation. Journal of Alzheimer's Disease, 2018, 64, 597-606.	1.2	69
81	The human subthalamic nucleus and globus pallidus internus differentially encode reward during action control. Human Brain Mapping, 2017, 38, 1952-1964.	1.9	24
82	Safety and efficacy of dual-lead thalamic deep brain stimulation for patients with treatment-refractory multiple sclerosis tremor: a single-centre, randomised, single-blind, pilot trial. Lancet Neurology, The, 2017, 16, 691-700.	4.9	62
83	Thalamic DBS with a constant-current device in essential tremor: AÂcontrolled clinical trial. Parkinsonism and Related Disorders, 2017, 40, 18-26.	1.1	59
84	Reengineering deep brain stimulation for movement disorders: Emerging technologies. Current Opinion in Biomedical Engineering, 2017, 4, 97-105.	1.8	18
85	Impulsivity in Parkinson's disease is associated with altered subthalamic but not globus pallidus internus activity. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 968-970.	0.9	16
86	Motor subtype changes in early Parkinson's disease. Parkinsonism and Related Disorders, 2017, 43, 67-72.	1.1	54
87	Measures of impulsivity in Parkinson's disease decrease after DBS in the setting of stable dopamine therapy. Parkinsonism and Related Disorders, 2017, 44, 13-17.	1.1	21
88	Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank. Frontiers in Neuroscience, 2017, 11, 734.	1.4	65
89	Postoperative lead migration in deep brain stimulation surgery: Incidence, risk factors, and clinical impact. PLoS ONE, 2017, 12, e0183711.	1.1	61
90	The International Deep Brain Stimulation Registry and Database for Gilles de la Tourette Syndrome: How Does It Work?. Frontiers in Neuroscience, 2016, 10, 170.	1.4	55

#	Article	lF	CITATIONS
91	Interdisciplinary Parkinson's Disease Deep Brain Stimulation Screening and the Relationship to Unintended Hospitalizations and Quality of Life. PLoS ONE, 2016, 11, e0153785.	1.1	15
92	Deep Brain Stimulation in a Case of Mitochondrial Disease. Movement Disorders Clinical Practice, 2016, 3, 139-145.	0.8	17
93	A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 54, 777-787.	1.2	263
94	Treatment of <i>ADCY5</i> -Associated Dystonia, Chorea, and Hyperkinetic Disorders With Deep Brain Stimulation. Journal of Child Neurology, 2016, 31, 1027-1035.	0.7	44
95	Thalamocortical network activity enables chronic tic detection in humans with Tourette syndrome. NeuroImage: Clinical, 2016, 12, 165-172.	1.4	69
96	Cystic Lesions as a Rare Complication of Deep Brain Stimulation. Movement Disorders Clinical Practice, 2016, 3, 87-90.	0.8	7
97	Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Techniques, Side Effects, and Postoperative Imaging. Stereotactic and Functional Neurosurgery, 2016, 94, 307-319.	0.8	54
98	Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Anatomy and Terminology. Stereotactic and Functional Neurosurgery, 2016, 94, 298-306.	0.8	452
99	138 Delayed Scalp Erosion After Deep Brain Stimulation Surgery. Neurosurgery, 2016, 63, 156.	0.6	8
100	Scheduled, intermittent stimulation of the thalamus reduces tics in Tourette syndrome. Parkinsonism and Related Disorders, 2016, 29, 35-41.	1.1	23
101	Tailored deep brain stimulation optimization for improved airway protective outcomes in Parkinson's disease. Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 2016, 5, 3-5.	0.2	7
102	Bilateral deep brain stimulation of the fornix for Alzheimer's disease: surgical safety in the ADvance trial. Journal of Neurosurgery, 2016, 125, 75-84.	0.9	66
103	Six-Nine Year Follow-Up of Deep Brain Stimulation for Obsessive-Compulsive Disorder. PLoS ONE, 2016, 11, e0167875.	1.1	39
104	Atrophy is a Real Phenomenon that Can Result in Changes in Deep Brain Stimulation Outcome. Journal of Epilepsy Research, 2016, 6, 42-43.	0.1	1
105	Post-mortem Findings in Huntington's Deep Brain Stimulation: A Moving Target Due to Atrophy. Tremor and Other Hyperkinetic Movements, 2016, 6, 372.	1.1	2
106	130â€fBilateral Fornix Deep Brain Stimulation for Alzheimer Disease. Neurosurgery, 2015, 62, 207.	0.6	6
107	Impact of an Interdisciplinary Deep Brain Stimulation Screening Model on Post-Surgical Complications in Essential Tremor Patients. PLoS ONE, 2015, 10, e0145623.	1.1	8
108	Smile without euphoria induced by deep brain stimulation: a case report. Neurocase, 2015, 21, 674-678.	0.2	6

#	Article	IF	CITATIONS
109	Tourette syndrome deep brain stimulation: A review and updated recommendations. Movement Disorders, 2015, 30, 448-471.	2.2	236
110	Coordinate-Based Lead Location Does Not Predict Parkinson's Disease Deep Brain Stimulation Outcome. PLoS ONE, 2014, 9, e93524.	1.1	48
111	Deep brain stimulation and ablation for obsessive compulsive disorder: evolution of contemporary indications, targets and techniques. International Journal of Neuroscience, 2014, 124, 394-402.	0.8	30
112	Deep Brain Stimulation May Improve Quality of Life in People With Parkinson's Disease Without Affecting Caregiver Burden. Neuromodulation, 2014, 17, 126-132.	0.4	22
113	Subthalamic Nucleus Versus Globus Pallidus Internus Deep Brain Stimulation: Translating the Rematch Into Clinical Practice. Movement Disorders Clinical Practice, 2014, 1, 24-35.	0.8	115
114	Surgical Neuroanatomy and Programming in Deep Brain Stimulation for Obsessive Compulsive Disorder. Neuromodulation, 2014, 17, 312-319.	0.4	46
115	Swallowing Outcomes Following Unilateral STN vs. GPi Surgery: A Retrospective Analysis. Dysphagia, 2014, 29, 425-431.	1.0	40
116	Intraoperative smile in a multiple sclerosis patient with medication-refractory tremor. Neurocase, 2014, 20, 698-703.	0.2	2
117	Deep Brain Stimulation for Treatment-resistant Depression: Systematic Review of Clinical Outcomes. Neurotherapeutics, 2014, 11, 475-484.	2.1	168
118	Cognitive declines after deep brain stimulation are likely to be attributable to more than caudate penetration and lead location. Brain, 2014, 137, e274-e274.	3.7	12
119	The "Brittle Response―to Parkinson's Disease Medications: Characterization and Response to Deep Brain Stimulation. PLoS ONE, 2014, 9, e94856.	1.1	19
120	Atrophy and Other Potential Factors Affecting Long Term Deep Brain Stimulation Response: A Case Series. PLoS ONE, 2014, 9, e111561.	1.1	26
121	Acute and Chronic Mood and Apathy Outcomes from a Randomized Study of Unilateral STN and GPi DBS. PLoS ONE, 2014, 9, e114140.	1.1	40
122	Deep brain stimulation for tremor associated with underlying ataxia syndromes: a case series and discussion of issues. Tremor and Other Hyperkinetic Movements, 2014, 4, 228.	1.1	24
123	Brittle Dyskinesia Following STN but not GPi Deep Brain Stimulation. Tremor and Other Hyperkinetic Movements, 2014, 4, 242.	1.1	19
124	Rescue GPi-DBS for a Stroke-associated Hemiballism in a Patient with STN-DBS. Tremor and Other Hyperkinetic Movements, 2014, 4, .	1.1	4
125	Valproate as a treatment for dopamine dysregulation syndrome (DDS) in Parkinson's disease. Journal of Neurology, 2013, 260, 521-527.	1.8	33
126	A Trial of Scheduled Deep Brain Stimulation for Tourette Syndrome. JAMA Neurology, 2013, 70, 85.	4.5	96

#	Article	IF	CITATIONS
127	Delineation of motor and somatosensory thalamic subregions utilizing probabilistic diffusion tractography and electrophysiology. Journal of Magnetic Resonance Imaging, 2013, 37, 600-609.	1.9	21
128	Unilateral thalamic deep brain stimulation in essential tremor demonstrates long-term ipsilateral effects. Parkinsonism and Related Disorders, 2013, 19, 1113-1117.	1.1	26
129	An Algorithm for Management of Deep Brain Stimulation Battery Replacements: Devising a Web-Based Battery Estimator and Clinical Symptom Approach. Neuromodulation, 2013, 16, 147-153.	0.4	33
130	Impact of discontinuing tremor suppressing medications following thalamic deep brain stimulation. Parkinsonism and Related Disorders, 2013, 19, 171-175.	1.1	10
131	Swallowing and deep brain stimulation in Parkinson's disease: A systematic review. Parkinsonism and Related Disorders, 2013, 19, 783-788.	1.1	91
132	Stimulation Region Within the Globus Pallidus Does Not Affect Verbal FluencyÂPerformance. Brain Stimulation, 2013, 6, 248-253.	0.7	19
133	Effect of lead trajectory on the response of essential head tremor to deep brain stimulation. Parkinsonism and Related Disorders, 2013, 19, 789-794.	1.1	23
134	Cerebral Venous Infarction: A Potentially Avoidable Complication of Deep Brain Stimulation Surgery. Neuromodulation, 2013, 16, 407-413.	0.4	51
135	Taking a Better History for Behavioral Issues Pre- and Post-Deep Brain Stimulation: Issues Missed by Standardized Scales. Neuromodulation, 2013, 16, 35-40.	0.4	9
136	Differential and Better Response to Deep Brain Stimulation of Chorea Compared to Dystonia in Huntington's Disease. Stereotactic and Functional Neurosurgery, 2013, 91, 129-133.	0.8	31
137	Management of Deep Brain Stimulator Battery Failure: Battery Estimators, Charge Density, and Importance of Clinical Symptoms. PLoS ONE, 2013, 8, e58665.	1.1	66
138	Worsening essential tremor following deep brain stimulation: disease progression versus tolerance. Brain, 2012, 135, 1455-1462.	3.7	121
139	Deep brain stimulation response in pathologically confirmed cases of multiple system atrophy. Parkinsonism and Related Disorders, 2012, 18, 86-88.	1.1	16
140	GPi and STN deep brain stimulation can suppress dyskinesia in Parkinson's disease. Parkinsonism and Related Disorders, 2012, 18, 814-818.	1.1	47
141	Selection of Deep Brain Stimulation Candidates in Private Neurology Practices: Referral May Be Simpler than a Computerized Triage System. Neuromodulation, 2012, 15, 246-250.	0.4	10
142	Setting realistic expectations for DBS in dystonia. Lancet Neurology, The, 2012, 11, 1014-1015.	4.9	7
143	Addiction-Like Manifestations and Parkinson's Disease: A Large Single Center 9-Year Experience. International Journal of Neuroscience, 2012, 122, 145-153.	0.8	37
144	Increased Thalamic Gamma Band Activity Correlates with Symptom Relief following Deep Brain Stimulation in Humans with Tourette's Syndrome. PLoS ONE, 2012, 7, e44215.	1.1	89

#	Article	IF	CITATIONS
145	Neurogenic potential of progenitor cells isolated from postmortem human Parkinsonian brains. Brain Research, 2012, 1464, 61-72.	1.1	34
146	Subthalamic deep brain stimulation with a constant-current device in Parkinson's disease: an open-label randomised controlled trial. Lancet Neurology, The, 2012, 11, 140-149.	4.9	354
147	Effects of STN and GPi Deep Brain Stimulation on Impulse Control Disorders and Dopamine Dysregulation Syndrome. PLoS ONE, 2012, 7, e29768.	1.1	99
148	Sphenoclival Intraosseous Lipoma in Skull Base. Open Neuroimaging Journal, 2012, 6, 99-102.	0.2	29
149	The Case for Testing Memory With Both Stories and Word Lists Prior to DBS Surgery for Parkinson's Disease. Clinical Neuropsychologist, 2011, 25, 348-358.	1.5	34
150	Pre- and Post- GPi DBS Neuropsychological Profiles in a Case of X-Linked Dystonia-Parkinsonism. Clinical Neuropsychologist, 2011, 25, 141-159.	1.5	8
151	Smile and laughter induction and intraoperative predictors of response to deep brain stimulation for obsessive-compulsive disorder. NeuroImage, 2011, 54, S247-S255.	2.1	72
152	Do patient's get angrier following STN, GPi, and thalamic deep brain stimulation. NeuroImage, 2011, 54, S227-S232.	2.1	29
153	Lessons learned from a large single center cohort of patients referred for DBS management. Parkinsonism and Related Disorders, 2011, 17, 236-239.	1.1	20
154	Lateral ventricle volume is poor predictor of post unilateral DBS motor change for Parkinson's disease. Parkinsonism and Related Disorders, 2011, 17, 343-347.	1.1	12
155	Rescue leads: A salvage technique for selected patients with a suboptimal response to standard DBS therapy. Parkinsonism and Related Disorders, 2011, 17, 451-455.	1.1	29
156	Unilateral deep brain stimulation surgery in Parkinson's disease improves ipsilateral symptoms regardless of laterality. Parkinsonism and Related Disorders, 2011, 17, 745-748.	1.1	17
157	Do Stable Patients With a Premorbid Depression History Have a Worse Outcome After Deep Brain Stimulation for Parkinson Disease?. Neurosurgery, 2011, 69, 357-361.	0.6	22
158	Weight Changes in Subthalamic Nucleus vs Globus Pallidus Internus Deep Brain Stimulation: Results From the COMPARE Parkinson Disease Deep Brain Stimulation Cohort. Neurosurgery, 2011, 68, 1233-1238.	0.6	35
159	Steady or not following thalamic deep brain stimulation for essential tremor. Journal of Neurology, 2011, 258, 1643-1648.	1.8	28
160	Mixed results for GPi-DBS in the treatment of cranio-facial and cranio-cervical dystonia symptoms. Journal of Neurology, 2011, 258, 2069-2074.	1.8	43
161	Delayed clinical improvement after deep brain stimulation–related subdural hematoma. Journal of Neurosurgery, 2011, 115, 289-294.	0.9	18
162	Unilateral GPi-DBS as a Treatment for Levodopa-Induced Respiratory Dyskinesia in Parkinson Disease. Neurologist, 2011, 17, 282-285.	0.4	11

#	Article	IF	CITATIONS
163	DBS Candidates That Fall Short on a Levodopa Challenge Test. Neurologist, 2011, 17, 263-268.	0.4	34
164	Deep Brain Stimulation for Parkinson Disease. Archives of Neurology, 2011, 68, 165.	4.9	776
165	Binge Eating in Parkinson's Disease: Prevalence, Correlates and the Contribution of Deep Brain Stimulation. Journal of Neuropsychiatry and Clinical Neurosciences, 2011, 23, 56-62.	0.9	62
166	Parkinson's disease DBS: what, when, who and why? The time has come to tailor DBS targets. Expert Review of Neurotherapeutics, 2010, 10, 1847-1857.	1.4	130
167	An evaluation of rating scales utilized for deep brain stimulation for dystonia. Journal of Neurology, 2010, 257, 44-58.	1.8	18
168	The number and nature of emergency department encounters in patients with deep brain stimulators. Journal of Neurology, 2010, 257, 122-131.	1.8	22
169	Lack of benefit of accumbens/capsular deep brain stimulation in a patient with both tics and obsessive–compulsive disorder. Neurocase, 2010, 16, 321-330.	0.2	68
170	Prevalence of Twiddler's Syndrome as a Cause of Deep Brain Stimulation Hardware Failure. Stereotactic and Functional Neurosurgery, 2010, 88, 353-359.	0.8	37
171	A Case of Mania following Deep Brain Stimulation for Obsessive Compulsive Disorder. Stereotactic and Functional Neurosurgery, 2010, 88, 322-328.	0.8	66
172	Differential Response of Dystonia and Parkinsonism following Globus Pallidus Internus Deep Brain Stimulation in X-Linked Dystonia-Parkinsonism (Lubag). Stereotactic and Functional Neurosurgery, 2010, 88, 329-333.	0.8	41
173	Should We Consider Vim Thalamic Deep Brain Stimulation for Select Cases of Severe Refractory Dystonic Tremor. Stereotactic and Functional Neurosurgery, 2010, 88, 98-104.	0.8	70
174	Relationship between higher rates of adverse events in deep brain stimulation using standardized prospective recording and patient outcomes. Neurosurgical Focus, 2010, 29, E4.	1.0	27
175	A closer look at unilateral versus bilateral deep brain stimulation: results of the National Institutes of Health COMPARE cohort. Journal of Neurosurgery, 2010, 113, 1224-1229.	0.9	75
176	INPH and Parkinson disease: differentiation by levodopa response. Nature Reviews Neurology, 2010, 6, 52-56.	4.9	30
177	Brain penetration effects of microelectrodes and deep brain stimulation leads in ventral intermediate nucleus stimulation for essential tremor. Journal of Neurosurgery, 2010, 112, 491-496.	0.9	51
178	Disrupting abnormal electrical activity with deep brain stimulation: is epilepsy the next frontier?. Neurosurgical Focus, 2010, 29, E7.	1.0	19
179	Deep Brain Stimulation for Intractable Obsessive Compulsive Disorder: Pilot Study Using a Blinded, Staggered-Onset Design. Biological Psychiatry, 2010, 67, 535-542.	0.7	315
180	The effect of deep brain stimulation surgery on repetitive behavior in Parkinson patients: A case series 1. Neurocase, 2010, 16, 31-36.	0.2	2

#	Article	IF	CITATIONS
181	Identification and management of deep brain stimulation intra- and postoperative urgencies and emergencies. Parkinsonism and Related Disorders, 2010, 16, 153-162.	1.1	68
182	Factors related to extended hospital stays following deep brain stimulation for Parkinson's disease. Parkinsonism and Related Disorders, 2010, 16, 324-328.	1.1	36
183	Deep Brain Stimulation for Tremor. , 2009, , 549-559.		0
184	Enough Is Enough. Archives of Neurology, 2009, 66, 778-80.	4.9	9
185	Venous Air Embolism in Deep Brain Stimulation. Stereotactic and Functional Neurosurgery, 2009, 87, 25-30.	0.8	53
186	Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: The COMPARE Trial. Annals of Neurology, 2009, 65, 586-595.	2.8	489
187	Greater improvement in quality of life following unilateral deep brain stimulation surgery in the globus pallidus as compared to the subthalamic nucleus. Journal of Neurology, 2009, 256, 1321-1329.	1.8	129
188	De novo and rescue DBS leads for refractory Tourette syndrome patients with severe comorbid OCD: a multiple case report. Journal of Neurology, 2009, 256, 1533-1539.	1.8	87
189	Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genetics, 2009, 41, 1308-1312.	9.4	1,745
190	Failed DBS for palliation of visual problems in a case of oculopalatal tremor. Parkinsonism and Related Disorders, 2009, 15, 71-73.	1.1	15
191	Cognitive declines one year after unilateral deep brain stimulation surgery in parkinson's disease: A controlled study using reliable change. Clinical Neuropsychologist, 2009, 23, 385-405.	1.5	62
192	Inappropriate crying and laughing in Parkinson disease and movement disorders. World Journal of Biological Psychiatry, 2009, 10, 234-240.	1.3	36
193	A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: The Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). NeuroImage, 2009, 47, T44-T52.	2.1	187
194	Dyskinetic Storm Induced by Intra-Operative Deep Brain Stimulator Placement. Open Neurosurgery Journal, 2009, 2, 1-3.	0.4	2
195	A case-based review of troubleshooting deep brain stimulator issues in movement and neuropsychiatric disorders. Parkinsonism and Related Disorders, 2008, 14, 532-538.	1.1	64
196	Clinical Cases where Lesion Therapy Was Chosen over Deep Brain Stimulation. Stereotactic and Functional Neurosurgery, 2008, 86, 147-152.	0.8	55
197	Avoiding deep brain stimulation failures in Tourette syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 111-112.	0.9	18
198	REOPERATION FOR SUBOPTIMAL OUTCOMES AFTER DEEP BRAIN STIMULATION SURGERY. Neurosurgery, 2008, 63, 754-761.	0.6	155

#	Article	IF	CITATIONS
199	Deep Brain Stimulation: Patient Selection in Parkinson's Disease, Other Movement Disorders, and Neuropsychiatric Disorders. , 2008, , 83-98.		Ο
200	Deep Brain Stimulation and the Role of the Neuropsychologist. Clinical Neuropsychologist, 2007, 21, 162-189.	1.5	56
201	Comprehensive Screening of a North American Parkinson's Disease Cohort for <i>LRRK2</i> Mutation. Neurodegenerative Diseases, 2007, 4, 386-391.	0.8	25
202	The Crossed Response Inhibition Task in Parkinson's Disease: Disinhibition Hyperkinesia. Neurocase, 2007, 13, 158-164.	0.2	13
203	The "Chair Test―to Aid in the Diagnosis of Psychogenic Gait Disorders. Neurologist, 2007, 13, 87-91.	0.4	47
204	Limbic, associative, and motor territories within the targets for deep brain stimulation: Potential clinical implications. Current Neurology and Neuroscience Reports, 2007, 7, 278-289.	2.0	42
205	Identifying candidates for deep brain stimulation in Parkinson's disease: the role of the primary care physician. Geriatrics, 2007, 62, 18-24.	0.3	7
206	Long-term Habituation of the Smile Response with Deep Brain Stimulation. Neurocase, 2006, 12, 191-196.	0.2	26
207	Deep Brain Stimulation of the Internal Segment of the Globus Pallidus in Delayed Runaway Dyskinesia. Archives of Neurology, 2006, 63, 1181.	4.9	28
208	Dual Electrode Thalamic Deep Brain Stimulation For The Treatment Of Posttraumatic And Multiple Sclerosis Tremor. Operative Neurosurgery, 2006, 58, ONS-280-ONS-286.	0.4	59
209	Lessons Learned in Deep Brain Stimulation for Movement and Neuropsychiatric Disorders. CNS Spectrums, 2006, 11, 521-537.	0.7	36
210	Genome-wide genotyping in Parkinson's disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurology, The, 2006, 5, 911-916.	4.9	360
211	Startling facts about emotion in Parkinson's disease: blunted reactivity to aversive stimuli. Brain, 2006, 129, 3356-3365.	3.7	99
212	Deep brain stimulation in the internal capsule and nucleus accumbens region: responses observed during active and sham programming. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 310-314.	0.9	166
213	Ventralis Intermedius plus Ventralis Oralis Anterior and Posterior Deep Brain Stimulation for Posttraumatic Holmes Tremor: Two Leads May Be Better than One: Technical Note. Operative Neurosurgery, 2005, 56, ONS-E445-ONS-E445.	0.4	81
214	Staged Deep Brain Stimulation for Refractory Craniofacial Dystonia with Blepharospasm: Case Report and Physiology. Neurosurgery, 2005, 56, E415-E415.	0.6	90
215	Deep brain stimulation of the GPi treats restless legs syndrome associated with dystonia. Movement Disorders, 2005, 20, 500-501.	2.2	30
216	What Is Deep Brain Stimulation "Failure―and How Do We Manage Our Own Failures?—Reply. Archives of Neurology, 2005, 62, 1938.	4.9	4

0

#	Article	IF	CITATIONS
217	Subthalamic Nucleus vs Globus Pallidus Interna Deep Brain Stimulation, the Rematch. Archives of Neurology, 2005, 62, 533.	4.9	80
218	Management of Referred Deep Brain Stimulation Failures. Archives of Neurology, 2005, 62, 1250.	4.9	400
219	Analysis of the PINK1 Gene in a Large Cohort of Cases With Parkinson Disease. Archives of Neurology, 2004, 61, 1898-904.	4.9	162
220	What's in a "Smile?―Intra-operative Observations of Contralateral Smiles Induced by Deep Brain Stimulation. Neurocase, 2004, 10, 271-279.	0.2	106
221	Aphasia and Thalamotomy: Important Issues. Stereotactic and Functional Neurosurgery, 2004, 82, 186-190.	0.8	15
222	A Mnemonic for Parkinson Disease Patients Considering DBS: A Tool to Improve Perceived Outcome of Surgery. Neurologist, 2004, 10, 290.	0.4	35
223	Salvage retreatment after failure of radiosurgery in patients with arteriovenous malformations. Journal of Neurosurgery, 2003, 98, 337-341.	0.9	56
224	Linear accelerator radiosurgery in the management of brain tumours. Annals of Medicine, 2000, 32, 64-80.	1.5	50
225	Assessing patient outcome and troubleshooting deep brain stimulation. , 0, , 91-130.		1

Assessing patient outcome and troubleshooting deep brain stimulation. , 0, , 138-181.