Ting Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3561995/publications.pdf Version: 2024-02-01

TINC VANC

#	Article	IF	CITATIONS
1	Bioâ€Inspired Ceramic–Metal Composites Using Ceramic 3D Printing and Centrifugal Infiltration. Advanced Engineering Materials, 2022, 24, 2101009.	3.5	7
2	A damage-tolerant, dual-scale, single-crystalline microlattice in the knobby starfish, <i>Protoreaster nodosus</i> . Science, 2022, 375, 647-652.	12.6	63
3	Microstructural design for mechanical–optical multifunctionality in the exoskeleton of the flower beetle <i>Torynorrhina flammea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
4	Fabrication of Photonic Microbricks via Crack Engineering of Colloidal Crystals. Advanced Functional Materials, 2020, 30, 1908242.	14.9	23
5	Strategies for simultaneous strengthening and toughening via nanoscopic intracrystalline defects in a biogenic ceramic. Nature Communications, 2020, 11, 5678.	12.8	20
6	Shapeâ€Preserving Chemical Conversion of Architected Nanocomposites. Advanced Materials, 2020, 32, e2003999.	21.0	20
7	Thermomechanical Analysis of a Bioâ€Inspired Lightweight Multifunctional Structure. Advanced Engineering Materials, 2020, 22, 2000371.	3.5	5
8	Mechanical design of the highly porous cuttlebone: A bioceramic hard buoyancy tank for cuttlefish. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23450-23459.	7.1	65
9	Thermomechanical Analysis of a Bioâ€Inspired Lightweight Multifunctional Structure. Advanced Engineering Materials, 2020, 22, 2070050.	3.5	0
10	Photonic Microbricks: Fabrication of Photonic Microbricks via Crack Engineering of Colloidal Crystals (Adv. Funct. Mater. 26/2020). Advanced Functional Materials, 2020, 30, 2070172.	14.9	1
11	Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (I): Methodology. Acta Biomaterialia, 2020, 107, 204-217.	8.3	23
12	Quantitative 3D structural analysis of the cellular microstructure of sea urchin spines (II): Large-volume structural analysis. Acta Biomaterialia, 2020, 107, 218-231.	8.3	10
13	Mechanical properties of stingray tesserae: High-resolution correlative analysis of mineral density and indentation moduli in tessellated cartilage. Acta Biomaterialia, 2019, 96, 421-435.	8.3	24
14	Automatic Crack Detection and Analysis for Biological Cellular Materials in X-Ray In Situ Tomography Measurements. Integrating Materials and Manufacturing Innovation, 2019, 8, 559-569.	2.6	7
15	Bioinspired design of flexible armor based on chiton scales. Nature Communications, 2019, 10, 5413.	12.8	56