Paolo A Netti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3561719/publications.pdf

Version: 2024-02-01

432 papers

17,187 citations

67 h-index

13865

24982 109 g-index

441 all docs

441 docs citations

441 times ranked

20609 citing authors

#	Article	IF	CITATIONS
1	Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Research, 2000, 60, 2497-503.	0.9	882
2	Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotechnology, 1997, 15, 778-783.	17.5	709
3	Diffusion of Macromolecules in Agarose Gels: Comparison of Linear and Globular Configurations. Biophysical Journal, 1999, 77, 542-552.	0.5	502
4	Controlled drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 2008, 60, 229-242.	13.7	369
5	Recent advances in holographic 3D particle tracking. Advances in Optics and Photonics, 2015, 7, 713.	25.5	258
6	Solid stress generated by spheroid growth estimated using a linear poroelasticity modela [*] †. Microvascular Research, 2003, 66, 204-212.	2.5	254
7	The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials, 2005, 26, 6194-6207.	11.4	237
8	A multi-functional scaffold for tissue regeneration: The need to engineer a tissue analogue. Biomaterials, 2007, 28, 5093-5099.	11.4	232
9	Poly-Îμ-caprolactone/hydroxyapatite composites for bone regeneration: In vitro characterization and human osteoblast response. Journal of Biomedical Materials Research - Part A, 2006, 76A, 151-162.	4.0	211
10	Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Research, 1995, 55, 5451-8.	0.9	204
11	Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab on A Chip, 2012, 12, 1638.	6.0	182
12	Enhancement of fluid filtration across tumor vessels: Implication for delivery of macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3137-3142.	7.1	174
13	Compatibility and the genesis of residual stress by volumetric growth. Journal of Mathematical Biology, 1996, 34, 889-914.	1.9	168
14	Effect of Transvascular Fluid Exchange on Pressure–Flow Relationship in Tumors: A Proposed Mechanism for Tumor Blood Flow Heterogeneity. Microvascular Research, 1996, 52, 27-46.	2.5	162
15	Determinants of cell–material crosstalk at the interface: towards engineering of cell instructive materials. Journal of the Royal Society Interface, 2012, 9, 2017-2032.	3.4	152
16	Digital holography as a method for 3D imaging and estimating the biovolume of motile cells. Lab on A Chip, 2013, 13, 4512.	6.0	152
17	Perspectives on: PEO-PPO-PEO Triblock Copolymers and their Biomedical Applications. Journal of Bioactive and Compatible Polymers, 2006, 21, 149-164.	2.1	143
18	Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomaterialia, 2010, 6, 2532-2539.	8.3	141

#	Article	IF	Citations
19	Red blood cell as an adaptive optofluidic microlens. Nature Communications, 2015, 6, 6502.	12.8	141
20	Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation. Journal of Biomechanics, 1999, 32, 1297-1307.	2.1	140
21	Transmural Coupling of Fluid Flow in Microcirculatory Network and Interstitium in Tumors. Microvascular Research, 1997, 53, 128-141.	2.5	132
22	PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials, 2008, 29, 4800-4807.	11.4	131
23	Stimuli-responsive transdermal microneedle patches. Materials Today, 2021, 47, 206-222.	14.2	129
24	Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Progress in Biomaterials, 2020, 9, 153-174.	4.5	119
25	Refocusing criterion via sparsity measurements in digital holography. Optics Letters, 2014, 39, 4719.	3.3	116
26	Design of porous polymeric scaffolds by gas foaming of heterogeneous blends. Journal of Materials Science: Materials in Medicine, 2009, 20, 2043-2051.	3.6	112
27	Metformin Prevents the Development of Chronic Heart Failure in the SHHF Rat Model. Diabetes, 2012, 61, 944-953.	0.6	112
28	Fluorescence Lifetimes and Quantum Yields of Rhodamine Derivatives: New Insights from Theory and Experiment. Journal of Physical Chemistry A, 2012, 116, 7491-7497.	2.5	108
29	Engineering Cell Instructive Materials To Control Cell Fate and Functions through Material Cues and Surface Patterning. ACS Applied Materials & Surface Patterning.	8.0	107
30	Cellulose Derivativeâ^'Hyaluronic Acid-Based Microporous Hydrogels Cross-Linked through Divinyl Sulfone (DVS) To Modulate Equilibrium Sorption Capacity and Network Stability. Biomacromolecules, 2004, 5, 92-96.	5.4	106
31	Curcumin bioavailability from oil in water nano-emulsions: In vitro and in vivo study on the dimensional, compositional and interactional dependence. Journal of Controlled Release, 2016, 233, 88-100.	9.9	106
32	3D morphometry of red blood cells by digital holography. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 1030-1036.	1.5	103
33	Supramolecular Spectrally Encoded Microgels with Double Strand Probes for Absolute and Direct miRNA Fluorescence Detection at High Sensitivity. Journal of the American Chemical Society, 2015, 137, 1758-1761.	13.7	101
34	Surface Investigation on Biomimetic Materials to Control Cell Adhesion: The Case of RGD Conjugation on PCL. Langmuir, 2010, 26, 9875-9884.	3.5	100
35	Particle alignment in a viscoelastic liquid flowing in a square-shaped microchannel. Lab on A Chip, 2013, 13, 4263.	6.0	98
36	Topographic cell instructive patterns to control cell adhesion, polarization and migration. Journal of the Royal Society Interface, 2014, 11, 20140687.	3.4	96

#	Article	IF	CITATIONS
37	Microsphere-integrated collagen scaffolds for tissue engineering: Effect of microsphere formulation and scaffold properties on protein release kinetics. Journal of Controlled Release, 2006, 113, 128-136.	9.9	95
38	Effect of Micro- and Macroporosity of Bone Tissue Three-Dimensional-Poly(É>-Caprolactone) Scaffold on Human Mesenchymal Stem Cells Invasion, Proliferation, and Differentiation $\langle i \rangle$ In Vitro $\langle i \rangle$. Tissue Engineering - Part A, 2010, 16, 2661-2673.	3.1	95
39	Functional porous hydrogels to study angiogenesis under the effect of controlled release of vascular endothelial growth factor. Acta Biomaterialia, 2012, 8, 3294-3301.	8.3	95
40	Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin and controls its growth and survival activities. Journal of Cell Science, 2013, 126, 4308-19.	2.0	95
41	Three-Dimensional Poly($\hat{l}\mu$ -caprolactone) Bioactive Scaffolds with Controlled Structural and Surface Properties. Biomacromolecules, 2012, 13, 3510-3521.	5.4	93
42	Intratumoral infusion of fluid: estimation of hydraulic conductivity and implications for the delivery of therapeutic agents. British Journal of Cancer, 1998, 78, 1442-1448.	6.4	90
43	Solid-state supercritical CO2 foaming of PCL and PCL-HA nano-composite: Effect of composition, thermal history and foaming process on foam pore structure. Journal of Supercritical Fluids, 2011, 58, 158-167.	3.2	88
44	Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions. Lab on A Chip, 2013, 13, 2802.	6.0	88
45	An Engineered Breast Cancer Model on a Chip to Replicate ECMâ€Activation In Vitro during Tumor Progression. Advanced Healthcare Materials, 2016, 5, 3074-3084.	7.6	88
46	Hyaluronic-acid-based semi-interpenetrating materials. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1223-1236.	3.5	87
47	Shuttleâ€Mediated Nanoparticle Delivery to the Blood–Brain Barrier. Small, 2013, 9, 853-862.	10.0	87
48	Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends. Journal of Porous Materials, 2012, 19, 181-188.	2.6	86
49	The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 86B, 548-557.	3.4	82
50	Oxygen consumption of chondrocytes in agarose and collagen gels: A comparative analysis. Biomaterials, 2008, 29, 1484-1493.	11.4	82
51	The Effective Dispersion of Nanovectors Within the Tumor Microvasculature. Annals of Biomedical Engineering, 2006, 34, 633-641.	2.5	81
52	Electroâ€Drawn Drugâ€Loaded Biodegradable Polymer Microneedles as a Viable Route to Hypodermic Injection. Advanced Functional Materials, 2014, 24, 3515-3523.	14.9	81
53	Progress in Microneedle-Mediated Protein Delivery. Journal of Clinical Medicine, 2020, 9, 542.	2.4	81
54	Reversible Holographic Patterns on Azopolymers for Guiding Cell Adhesion and Orientation. ACS Applied Materials & Diterfaces, 2015, 7, 16984-16991.	8.0	79

#	Article	IF	Citations
55	Encoding multiple holograms for speckle-noise reduction in optical display. Optics Express, 2014, 22, 25768.	3.4	78
56	Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Experimental Cell Research, 2015, 330, 240-247.	2.6	78
57	Novel 3D porous multi-phase composite scaffolds based on PCL, thermoplastic zein and ha prepared via supercritical CO2 foaming for bone regeneration. Composites Science and Technology, 2010, 70, 1838-1846.	7.8	75
58	Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells. Journal of Biotechnology, 2015, 193, 3-10.	3.8	75
59	Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells. Journal of Nanoparticle Research, 2011, 13, 4295-4309.	1.9	74
60	Openâ€Pore Biodegradable Foams Prepared via Gas Foaming and Microparticulate Templating. Macromolecular Bioscience, 2008, 8, 655-664.	4.1	73
61	A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 925-934.	3.3	73
62	Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology. Nanoscale, 2014, 6, 10264-10273.	5.6	73
63	On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change. Optics Express, 2012, 20, 28485.	3.4	72
64	Silver-containing mesoporous bioactive glass with improved antibacterial properties. Journal of Materials Science: Materials in Medicine, 2013, 24, 2129-2135.	3.6	71
65	Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions â€~at a glance'. Scientific Reports, 2015, 5, 8831.	3.3	71
66	Processing/structure/property relationship of multiâ€scaled PCL and PCL–HA composite scaffolds prepared via gas foaming and NaCl reverse templating. Biotechnology and Bioengineering, 2011, 108, 963-976.	3.3	70
67	The role of microscaffold properties in controlling the collagen assembly in 3D dermis equivalent using modular tissue engineering. Biomaterials, 2013, 34, 7851-7861.	11.4	69
68	Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres. Journal of Biomedical Materials Research - Part A, 2010, 92A, 94-102.	4.0	68
69	Design of Bimodal PCL and PCLâ€HA Nanocomposite Scaffolds by Two Step Depressurization During Solidâ€state Supercritical CO ₂ Foaming. Macromolecular Rapid Communications, 2011, 32, 1150-1156.	3.9	68
70	Non-invasive Production of Multi-Compartmental Biodegradable Polymer Microneedles for Controlled Intradermal Drug Release of Labile Molecules. Frontiers in Bioengineering and Biotechnology, 2019, 7, 296.	4.1	68
71	Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions. Acta Biomaterialia, 2015, 23, 63-71.	8.3	67
72	Chitosan-based hydrogels: synthesis and characterization. Journal of Materials Science: Materials in Medicine, 2001, 12, 861-864.	3.6	66

#	Article	IF	CITATIONS
73	Particle tracking by full-field complex wavefront subtraction in digital holography microscopy. Lab on A Chip, 2014, 14, 1129-1134.	6.0	66
74	The performance of poly- $\hat{l}\mu$ -caprolactone scaffolds in a rabbit femur model with and without autologous stromal cells and BMP4. Biomaterials, 2007, 28, 3101-3109.	11.4	65
75	Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method. Lab on A Chip, 2014, 14, 2499.	6.0	65
76	Rheometry-on-a-chip: measuring the relaxation time of a viscoelastic liquid through particle migration in microchannel flows. Lab on A Chip, 2015, 15, 783-792.	6.0	64
77	Dynamic-mechanical properties of a novel composite intervertebral disc prosthesis. Journal of Materials Science: Materials in Medicine, 2007, 18, 2159-2165.	3.6	63
78	3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro. Acta Biomaterialia, 2018, 75, 200-212.	8.3	63
79	Cardioprotective Effects of Nanoemulsions Loaded with Anti-Inflammatory Nutraceuticals against Doxorubicin-Induced Cardiotoxicity. Nutrients, 2018, 10, 1304.	4.1	62
80	Bioengineered Skin Substitutes: The Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds. Journal of Clinical Medicine, 2019, 8, 2083.	2.4	62
81	Electroanalytical Sensor Based on Gold-Nanoparticle-Decorated Paper for Sensitive Detection of Copper Ions in Sweat and Serum. Analytical Chemistry, 2021, 93, 5225-5233.	6.5	62
82	Continuous fibre reinforced polymers as connective tissue replacement. Composites Science and Technology, 2004, 64, 861-871.	7.8	60
83	Bioengineered tumoral microtissues recapitulate desmoplastic reaction of pancreatic cancer. Acta Biomaterialia, 2017, 49, 152-166.	8.3	60
84	Cell mechanosensing is regulated by substrate strain energy rather than stiffness. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22004-22013.	7.1	60
85	A model for temporal heterogeneities of tumor blood flow. Microvascular Research, 2003, 65, 56-60.	2.5	58
86	Radiolabeled PET/MRI Nanoparticles for Tumor Imaging. Journal of Clinical Medicine, 2020, 9, 89.	2.4	58
87	Hydrogels as an interface between bone and an implant. Biomaterials, 1993, 14, 1098-1104.	11.4	57
88	Clickable Functionalization of Liposomes with the gH625 Peptide from <i>Herpes simplex</i> Virus Type I for Intracellular Drug Delivery. Chemistry - A European Journal, 2011, 17, 12659-12668.	3.3	57
89	Effect of fluid rheology on particle migration in a square-shaped microchannel. Microfluidics and Nanofluidics, 2015, 19, 95-104.	2.2	57
90	Magnetophoresis â€~meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Lab on A Chip, 2015, 15, 1912-1922.	6.0	56

#	Article	IF	Citations
91	A Microfluidic Platform to design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI. Scientific Reports, 2016, 6, 37906.	3.3	56
92	Tuning the material-cytoskeleton crosstalk via nanoconfinement of focal adhesions. Biomaterials, 2014, 35, 2743-2751.	11.4	54
93	Nanoengineered Surfaces for Focal Adhesion Guidance Trigger Mesenchymal Stem Cell Self-Organization and Tenogenesis. Nano Letters, 2015, 15, 1517-1525.	9.1	54
94	Spatio‶emporal Control of Dynamic Topographic Patterns on Azopolymers for Cell Culture Applications. Advanced Functional Materials, 2016, 26, 7572-7580.	14.9	53
95	Engineered dermal equivalent tissue in vitro by assembly of microtissue precursors. Acta Biomaterialia, 2010, 6, 2548-2553.	8.3	52
96	Engineered Microneedle Patches for Controlled Release of Active Compounds: Recent Advances in Release Profile Tuning. Advanced Therapeutics, 2020, 3, 2000171.	3.2	52
97	Design and manufacture of microporous polymeric materials with hierarchal complex structure for biomedical application. Materials Science and Technology, 2008, 24, 1111-1117.	1.6	51
98	Exploring the Metric of Excited State Proton Transfer Reactions. Journal of Physical Chemistry B, 2013, 117, 16165-16173.	2.6	51
99	Shuttleâ€mediated nanoparticle transport across an in vitro brain endothelium under flow conditions. Biotechnology and Bioengineering, 2017, 114, 1087-1095.	3.3	51
100	Tethered Pyro-Electrohydrodynamic Spinning for Patterning Well-Ordered Structures at Micro- and Nanoscale. Chemistry of Materials, 2014, 26, 3357-3360.	6.7	50
101	Composite hydrogels for intervertebral disc prostheses. Journal of Materials Science: Materials in Medicine, 1996, 7, 251-254.	3.6	49
102	Engineered $\hat{l}\frac{1}{4}$ -bimodal poly($\hat{l}\mu$ -caprolactone) porous scaffold for enhanced hMSC colonization and proliferation. Acta Biomaterialia, 2009, 5, 1082-1093.	8.3	49
103	Complementary therapeutic effects of dual delivery of insulinâ€like growth factorâ€l and vascular endothelial growth factor by gelatin microspheres in experimental heart failure. European Journal of Heart Failure, 2011, 13, 1264-1274.	7.1	49
104	Enzymatic sensing with laccase-functionalized textile organic biosensors. Organic Electronics, 2017, 40, 51-57.	2.6	49
105	Influence of electrospun fiber mesh size on hMSC oxygen metabolism in 3D collagen matrices: Experimental and theoretical evidences. Biotechnology and Bioengineering, 2011, 108, 1965-1976.	3.3	47
106	Engineering of poly($\hat{l}\mu$ -caprolactone) microcarriers to modulate protein encapsulation capability and release kinetic. Journal of Materials Science: Materials in Medicine, 2008, 19, 1703-1711.	3.6	46
107	Azobenzene-based polymers: emerging applications as cell culture platforms. Biomaterials Science, 2018, 6, 990-995.	5.4	46
108	Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	45

#	Article	IF	Citations
109	Non-radiative decay paths in rhodamines: new theoretical insights. Physical Chemistry Chemical Physics, 2014, 16, 20681-20688.	2.8	44
110	Induction of directional sprouting angiogenesis by matrix gradients. Journal of Biomedical Materials Research - Part A, 2007, 80A, 297-305.	4.0	43
111	Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements. Journal of Optics, 2009, 11, 034016.	1.5	43
112	Optical signature of erythrocytes by light scattering in microfluidic flows. Lab on A Chip, 2015, 15, 3278-3285.	6.0	43
113	Pre-vascularized dermis model for fast and functional anastomosis with host vasculature. Biomaterials, 2019, 192, 159-170.	11.4	43
114	Viscoelastic behavior of composite ligament prostheses. , 1998, 42, 6-12.		42
115	Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application. Journal of Biomedical Materials Research - Part A, 2006, 79A, 229-236.	4.0	41
116	3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues. Acta Biomaterialia, 2017, 47, 1-13.	8.3	41
117	Effects of fibronectin and laminin on structural, mechanical and transport properties of 3D collageneous network. Journal of Materials Science: Materials in Medicine, 2007, 18, 245-253.	3.6	39
118	Image processing and fractal box counting: user-assisted method for multi-scale porous scaffold characterization. Journal of Materials Science: Materials in Medicine, 2010, 21, 3109-3118.	3.6	39
119	Recapitulating spatiotemporal tumor heterogeneity in vitro through engineered breast cancer microtissues. Acta Biomaterialia, 2018, 73, 236-249.	8.3	39
120	The effect of composition and microstructure on the viscoelastic properties of dermis. Journal of Biomechanics, 2009, 42, 430-435.	2.1	38
121	Quantitative phase maps denoising of long holographic sequences by using SPADEDH algorithm. Applied Optics, 2013, 52, 1453.	1.8	38
122	Structural insights into amyloid structures of the C-terminal region of nucleophosmin 1 in type A mutation of acute myeloid leukemia. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 637-644.	2.3	38
123	Endogenous human skin equivalent promotes inÂvitro morphogenesis of follicle-like structures. Biomaterials, 2016, 101, 86-95.	11.4	37
124	Oil/water nano-emulsion loaded with cobalt ferrite oxide nanocubes for photo-acoustic and magnetic resonance dual imaging in cancer: in vitro and preclinical studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 275-286.	3.3	37
125	Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate. Frontiers in Bioengineering and Biotechnology, 2018, 6, 190.	4.1	37
126	Enhanced Drug Delivery into Cell Cytosol <i>via</i> Glycoprotein H-Derived Peptide Conjugated Nanoemulsions. ACS Nano, 2017, 11, 9802-9813.	14.6	36

#	Article	IF	CITATIONS
127	InÂvitro activation of the neuro-transduction mechanism in sensitive organotypic human skin model. Biomaterials, 2017, 113, 217-229.	11.4	36
128	Three-Dimensional Microstructured Azobenzene-Containing Gelatin as a Photoactuable Cell Confining System. ACS Applied Materials & Interfaces, 2018, 10, 91-97.	8.0	36
129	Polystyrene nanoparticles affect Xenopus laevis development. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	35
130	Dynamics of nanoparticle diffusion and uptake in three-dimensional cell cultures. Colloids and Surfaces B: Biointerfaces, 2017, 149, 7-15.	5.0	35
131	Subdiffusive Molecular Motion in Nanochannels Observed by Fluorescence Correlation Spectroscopy. Analytical Chemistry, 2010, 82, 997-1005.	6.5	34
132	Intermolecular proton shuttling in excited state proton transfer reactions: insights from theory. Physical Chemistry Chemical Physics, 2014, 16, 8661-8666.	2.8	34
133	Electro-drawn polymer microneedle arrays with controlled shape and dimension. Sensors and Actuators B: Chemical, 2018, 255, 1553-1560.	7.8	34
134	Design and preparation of μâ€bimodal porous scaffold for tissue engineering. Journal of Applied Polymer Science, 2007, 106, 3335-3342.	2.6	33
135	New Insights into the Mechanisms of the Interactions Between Doxorubicin and the Ion-Exchange Hydrogel DC Beadâ,,¢ for Use in Transarterial Chemoembolization (TACE). Journal of Biomaterials Science, Polymer Edition, 2012, 23, 333-354.	3.5	33
136	Highly Efficient Surface-Enhanced Raman Scattering Substrate Formulation by Self-Assembled Gold Nanoparticles Physisorbed on Poly(<i>N</i> -isopropylacrylamide) Thermoresponsive Hydrogels. Langmuir, 2014, 30, 3869-3875.	3.5	33
137	Ligand engagement on material surfaces is discriminated by cell mechanosensoring. Biomaterials, 2015, 45, 72-80.	11.4	33
138	Relaxation time of polyelectrolyte solutions: When $\langle i \rangle \hat{l} /\!\!/ \langle i \rangle$ -rheometry steps in charge. Journal of Rheology, 2017, 61, 13-21.	2.6	33
139	Building a Tissue In Vitro from the Bottom Up: Implications in Regenerative Medicine. Methodist DeBakey Cardiovascular Journal, 2021, 9, 213.	1.0	32
140	3D tumor microtissues as an in vitro testing platform for microenvironmentally-triggered drug delivery systems. Acta Biomaterialia, 2017, 57, 47-58.	8.3	32
141	Intestineâ€onâ€chip device increases ECM remodeling inducing faster epithelial cell differentiation. Biotechnology and Bioengineering, 2020, 117, 556-566.	3.3	32
142	Recombinant Filamentous Bacteriophages Encapsulated in Biodegradable Polymeric Microparticles for Stimulation of Innate and Adaptive Immune Responses. Microorganisms, 2020, 8, 650.	3.6	32
143	Investigation of the mechanisms governing doxorubicin and irinotecan release from drug-eluting beads: mathematical modeling and experimental verification. Journal of Materials Science: Materials in Medicine, 2013, 24, 2359-2370.	3.6	31
144	Tunable stability of monodisperse secondary O/W nano-emulsions. Nanoscale, 2014, 6, 9300.	5.6	31

#	Article	lF	Citations
145	Large-Scale Plasmonic nanoCones Array For Spectroscopy Detection. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23597-23604.	8.0	31
146	Biophysical properties of dermal building-blocks affect extra cellular matrix assembly in 3D endogenous macrotissue. Biofabrication, 2016, 8, 015010.	7.1	31
147	Self-assembly of gold nanowire networks into gold foams: production, ultrastructure and applications. Inorganic Chemistry Frontiers, 2017, 4, 1033-1041.	6.0	31
148	Turn-on fluorescence detection of protein by molecularly imprinted hydrogels based on supramolecular assembly of peptide multi-functional blocks. Journal of Materials Chemistry B, 2018, 6, 1207-1215.	5.8	31
149	Intestine-Liver Axis On-Chip Reveals the Intestinal Protective Role on Hepatic Damage by Emulating Ethanol First-Pass Metabolism. Frontiers in Bioengineering and Biotechnology, 2020, 8, 163.	4.1	31
150	Design of novel three-phase PCL/TZ–HA biomaterials for use in bone regeneration applications. Journal of Materials Science: Materials in Medicine, 2010, 21, 2569-2581.	3.6	30
151	Evolutionary screening and adsorption behavior of engineered M13 bacteriophage and derived dodecapeptide for selective decoration of gold interfaces. Journal of Colloid and Interface Science, 2013, 389, 220-229.	9.4	30
152	Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues. Acta Biomaterialia, 2017, 57, 334-341.	8.3	30
153	Diffusion limited green synthesis of ultra-small gold nanoparticles at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 548-557.	4.7	30
154	Azobenzene-based sinusoidal surface topography drives focal adhesion confinement and guides collective migration of epithelial cells. Scientific Reports, 2020, 10, 15329.	3.3	30
155	Coating process and early stage adhesion evaluation of poly(2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 1541-1551.	3.6	29
156	Microstructure, degradation and in vitro MG63 cells interactions of a new poly($\hat{l}\mu$ -caprolactone), zein, and hydroxyapatite composite for bone tissue engineering. Journal of Bioactive and Compatible Polymers, 2012, 27, 210-226.	2.1	29
157	Multiplex single particle analysis in microfluidics. Analyst, The, 2014, 139, 5239-5246.	3.5	29
158	From square to circular polymeric microchannels by spin coating technology: a low cost platform for endothelial cell culture. Biofabrication, 2016, 8, 025005.	7.1	29
159	Hemoglobin onjugated Gelatin Microsphere as a Smart Oxygen Releasing Biomaterial. Advanced Healthcare Materials, 2016, 5, 2655-2666.	7.6	29
160	Light-responsive polymer brushes: active topographic cues for cell culture applications. Polymer Chemistry, 2017, 8, 3271-3278.	3.9	29
161	Dynamic Manipulation of Cell Membrane Curvature by Light-Driven Reshaping of Azopolymer. Nano Letters, 2020, 20, 577-584.	9.1	29
162	Theranostic Design of Angiopep-2 Conjugated Hyaluronic Acid Nanoparticles (Thera-ANG-cHANPs) for Dual Targeting and Boosted Imaging of Glioma Cells. Cancers, 2021, 13, 503.	3.7	29

#	Article	IF	CITATIONS
163	Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness. Nanoscale, 2016, 8, 8798-8809.	5.6	28
164	Compatibility and the genesis of residual stress by volumetric growth. Journal of Mathematical Biology, 1996, 34, 889-914.	1.9	28
165	Bioactivated collagen-based scaffolds embedding protein-releasing biodegradable microspheres: tuning of protein release kinetics. Journal of Materials Science: Materials in Medicine, 2009, 20, 2117-2128.	3.6	27
166	A novel hybrid PU-alumina flexible foam with superior hydrophilicity and adsorption of carcinogenic compounds from tobacco smoke. Microporous and Mesoporous Materials, 2012, 151, 79-87.	4.4	27
167	Engineering strategies to control vascular endothelial growth factor stability and levels in a collagen matrix for angiogenesis: The role of heparin sodium salt and the PLGA-based microsphere approach. Acta Biomaterialia, 2013, 9, 7389-7398.	8.3	27
168	Micro-patterned endogenous stroma equivalent induces polarized crypt-villus architecture of human small intestinal epithelium. Acta Biomaterialia, 2018, 81, 43-59.	8.3	27
169	Time and Space Evolution of Transport Properties in Agarose–Chondrocyte Constructs. Tissue Engineering, 2006, 12, 2193-2201.	4.6	26
170	Effect of Process Conditions on the Growth of Three-Dimensional Dermal-Equivalent Tissue Obtained by Microtissue Precursor Assembly. Tissue Engineering - Part C: Methods, 2011, 17, 155-164.	2.1	26
171	Thermoresponsive PNIPAAm hydrogel scaffolds with encapsulated AuNPs show high analyte-trapping ability and tailored plasmonic properties for high sensing efficiency. Journal of Materials Chemistry B, 2015, 3, 53-58.	5.8	26
172	Elastin-like-recombinamers multilayered nanofibrous scaffolds for cardiovascular applications. Biofabrication, 2016, 8, 045009.	7.1	26
173	Hybrid Core-Shell (HyCoS) Nanoparticles produced by Complex Coacervation for Multimodal Applications. Scientific Reports, 2017, 7, 45121.	3.3	26
174	Hybrid core shell nanoparticles entrapping Gd-DTPA and ¹⁸ F-FDG for simultaneous PET/MRI acquisitions. Nanomedicine, 2017, 12, 2223-2231.	3.3	26
175	Modular Strategies to Build Cell-Free and Cell-Laden Scaffolds towards Bioengineered Tissues and Organs. Journal of Clinical Medicine, 2019, 8, 1816.	2.4	26
176	Supramolecular Microgels with Molecular Beacons at the Interface for Ultrasensitive, Amplification-Free, and SNP-Selective miRNA Fluorescence Detection. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17147-17156.	8.0	26
177	Engineered PLGA-PVP/VA based formulations to produce electro-drawn fastÂbiodegradable microneedles for labile biomolecule delivery. Progress in Biomaterials, 2020, 9, 203-217.	4.5	26
178	Holographic tracking of living cells by three-dimensional reconstructed complex wavefronts alignment. Optics Letters, 2014, 39, 2759.	3.3	25
179	Optimizing design and fabrication of microfluidic devices for cell cultures: An effective approach to control cell microenvironment in three dimensions. Biomicrofluidics, 2014, 8, 046503.	2.4	25
180	Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure. ACS Applied Materials & District Structure.	8.0	25

#	Article	IF	Citations
181	A threeâ€dimensional microfluidized liver system to assess hepatic drug metabolism and hepatotoxicity. Biotechnology and Bioengineering, 2019, 116, 1152-1163.	3.3	25
182	Photonic applications of azobenzene molecules embedded in amorphous polymer. Rivista Del Nuovo Cimento, 2020, 43, 599-629.	5.7	25
183	Thermodynamic Signature of Secondary Nano-emulsion Formation by Isothermal Titration Calorimetry. Langmuir, 2014, 30, 14427-14433.	3.5	24
184	Tumorâ€activated prodrug (TAP)â€conjugated nanoparticles with cleavable domains for safe doxorubicin delivery. Biotechnology and Bioengineering, 2015, 112, 601-611.	3.3	24
185	An Engineered Cellâ€Instructive Stroma for the Fabrication of a Novel Full Thickness Human Cervix Equivalent In Vitro. Advanced Healthcare Materials, 2017, 6, 1601199.	7.6	24
186	Preparation and Characterization of Magnetic and Porous Metal-Ceramic Nanocomposites from a Zeolite Precursor and Their Application for DNA Separation. Journal of Biomedical Nanotechnology, 2017, 13, 337-348.	1.1	24
187	Azopolymer photopatterning for directional control of angiogenesis. Acta Biomaterialia, 2017, 63, 317-325.	8.3	24
188	Matrix metalloproteinase-cleavable nanocapsules for tumor-activated drug release. Acta Biomaterialia, 2019, 89, 265-278.	8.3	24
189	Tunable Release of Curcumin with an In Silico-Supported Approach from Mixtures of Highly Porous PLGA Microparticles. Materials, 2020, 13, 1807.	2.9	24
190	Design of biodegradable bi-compartmental microneedles for the stabilization and the controlled release of the labile molecule collagenase for skin healthcare. Journal of Materials Chemistry B, 2021, 9, 392-403.	5.8	24
191	Sub-100 nm biodegradable nanoparticles:in vitrorelease features and toxicity testing in 2D and 3D cell cultures. Nanotechnology, 2013, 24, 045101.	2.6	23
192	Modular polylactic acid microparticleâ€based scaffolds prepared via microfluidic emulsion/solvent displacement process: Fabrication, characterization, and <i>in vitro</i> mesenchymal stem cells interaction study. Journal of Biomedical Materials Research - Part A, 2013, 101A, 720-732.	4.0	23
193	A method to tune the shape of protein-encapsulated polymeric microspheres. Scientific Reports, 2015, 5, 12634.	3.3	23
194	Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes. Nanoscale, 2017, 9, 11288-11296.	5.6	23
195	RHEOLOGICAL STUDY ON HYALURONIC ACID AND ITS DERIVATIVE SOLUTIONS. Journal of Macromolecular Science - Pure and Applied Chemistry, 1999, 36, 991-1000.	2.2	22
196	Mathematical modelling of the evolution of protein distribution within single PLGA microspheres: prediction of local concentration profiles and release kinetics. Journal of Materials Science: Materials in Medicine, 2008, 19, 1587-1593.	3.6	22
197	A numerical model for durotaxis. Journal of Theoretical Biology, 2011, 280, 150-158.	1.7	22
198	Cell Fluidics: Producing Cellular Streams on Micropatterned Synthetic Surfaces. Langmuir, 2012, 28, 714-721.	3.5	22

#	Article	IF	Citations
199	Fluorescent (rhodamine), folate decorated and doxorubicin charged, PEGylated nanoparticles synthesis. Journal of Materials Science: Materials in Medicine, 2012, 23, 1697-1704.	3.6	22
200	Hollow micro- and nano-particles by gas foaming. Nano Research, 2014, 7, 1018-1026.	10.4	22
201	Functionalized poly(ethylene glycol) diacrylate microgels by microfluidics: In situ peptide encapsulation for in serum selective protein detection. Colloids and Surfaces B: Biointerfaces, 2016, 145, 21-29.	5.0	22
202	Impact of biopolymer matrices on relaxometric properties of contrast agents. Interface Focus, 2016, 6, 20160061.	3.0	22
203	Single-cell screening of multiple biophysical properties in leukemia diagnosis from peripheral blood by pure light scattering. Scientific Reports, 2017, 7, 12666.	3.3	22
204	The level of 24-hydroxycholesteryl esters decreases in plasma of patients with Parkinson's disease. Neuroscience Letters, 2018, 672, 108-112.	2.1	22
205	Novel process to prepare magnetic metal-ceramic nanocomposites from zeolite precursor and their use as adsorbent of agrochemicals from water. Journal of Environmental Chemical Engineering, 2018, 6, 527-538.	6.7	22
206	Organ on Chip Technology to Model Cancer Growth and Metastasis. Bioengineering, 2022, 9, 28.	3.5	22
207	Spatial and structural dependence of mechanical properties of porcine intervertebral disc. Journal of Materials Science: Materials in Medicine, 2002, 13, 1277-1280.	3.6	21
208	Isothermal and non-isothermal polymerization of methyl methacrylate in presence of multiple initiators. Chemical Engineering Journal, 2010, 162, 776-786.	12.7	21
209	The p63 Protein Isoform Î"Np63α Modulates Y-box Binding Protein 1 in Its Subcellular Distribution and Regulation of Cell Survival and Motility Genes. Journal of Biological Chemistry, 2012, 287, 30170-30180.	3.4	21
210	Osteogenic differentiation and mineralization in fibre-reinforced tubular scaffolds: theoretical study and experimental evidences. Journal of the Royal Society Interface, 2012, 9, 2201-2212.	3.4	21
211	Binary system thermodynamics to control pore architecture of PCL scaffold via temperature-driven phase separation process. Journal of Biomaterials Applications, 2012, 27, 241-254.	2.4	21
212	Controlling Cell Functions and Fate with Surfaces and Hydrogels: The Role of Material Features in Cell Adhesion and Signal Transduction. Gels, 2016, 2, 12.	4.5	21
213	Ultrastable Liquid–Liquid Interface as Viable Route for Controlled Deposition of Biodegradable Polymer Nanocapsules. Small, 2016, 12, 3005-3013.	10.0	21
214	Synthesis of semicrystalline nanocapsular structures obtained by Thermally Induced Phase Separation in nanoconfinement. Scientific Reports, 2016, 6, 32727.	3.3	21
215	PCL-HA microscaffolds for <i>in vitro</i> modular bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1865-1875.	2.7	21
216	Hydrodenticity to enhance relaxivity of gadolinium-DTPA within crosslinked hyaluronic acid nanoparticles. Nanomedicine, 2017, 12, 2199-2210.	3.3	21

#	Article	IF	Citations
217	Labelâ€free analysis of mononuclear human blood cells in microfluidic flow by coherent imaging tools. Journal of Biophotonics, 2017, 10, 683-689.	2.3	21
218	Bioengineering Microgels and Hydrogel Microparticles for Sensing Biomolecular Targets. Gels, 2017, 3, 20.	4.5	21
219	Aligned fibrous decellularized cell derived matrices for mesenchymal stem cell amplification. Journal of Biomedical Materials Research - Part A, 2019, 107, 2536-2546.	4.0	21
220	Water-Mediated Nanostructures for Enhanced MRI: Impact of Water Dynamics on Relaxometric Properties of Gd-DTPA. Theranostics, 2019, 9, 1809-1824.	10.0	21
221	<p>Nano-Encapsulation of Coenzyme Q10 in Secondary and Tertiary Nano-Emulsions for Enhanced Cardioprotection and Hepatoprotection in Human Cardiomyocytes and Hepatocytes During Exposure to Anthracyclines and Trastuzumab</p> . International Journal of Nanomedicine, 2020, Volume 15, 4859-4876.	6.7	21
222	Cell recruitment and transfection in gene activated collagen matrix. Biomaterials, 2010, 31, 570-576.	11.4	20
223	gH625 is a viral derived peptide for effective delivery of intrinsically disordered proteins. International Journal of Nanomedicine, 2013, 8, 2555.	6.7	20
224	Microfluidic Lagrangian Trap for Brownian Particles: Three-Dimensional Focusing down to the Nanoscale. Physical Review Applied, 2014, 2, .	3.8	20
225	Investigation on specific solutions of Gerchberg–Saxton algorithm. Optics and Lasers in Engineering, 2014, 52, 206-211.	3.8	20
226	An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application. Scientific Reports, 2015, 5, 17876.	3.3	20
227	Engineering a human skin equivalent to study dermis remodelling and epidermis senescence in vitro after UVA exposure. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1658-1669.	2.7	20
228	Proteostasis unbalance of nucleophosmin 1 in Acute Myeloid Leukemia: An aggregomic perspective. International Journal of Biological Macromolecules, 2020, 164, 3501-3507.	7.5	20
229	Exosomes in Gliomas: Biogenesis, Isolation, and Preliminary Applications in Nanomedicine. Pharmaceuticals, 2020, 13, 319.	3.8	20
230	Biophysical investigation of living monocytes in flow by collaborative coherent imaging techniques. Biomedical Optics Express, 2018, 9, 5194.	2.9	20
231	Microsphereâ€integrated drugâ€eluting stents: PLGA microsphere integration in hydrogel coating for local and prolonged delivery of hydrophilic antirestenosis agents. Journal of Biomedical Materials Research - Part A, 2011, 97A, 201-211.	4.0	19
232	ECM Mechano-Sensing Regulates Cytoskeleton Assembly and Receptor-Mediated Endocytosis of Nanoparticles. ACS Biomaterials Science and Engineering, 2017, 3, 1586-1594.	5.2	19
233	Immunoresponsive microbiota-gut-on-chip reproduces barrier dysfunction, stromal reshaping and probiotics translocation under inflammation. Biomaterials, 2022, 286, 121573.	11.4	19
234	Engineering of Covalently Immobilized Gradients of RGD Peptides on Hydrogel Scaffolds: Effect on Cell Behaviour. Macromolecular Symposia, 2008, 266, 36-40.	0.7	18

#	Article	IF	Citations
235	Molding Micropatterns of Elasticity on PEGâ€Based Hydrogels to Control Cell Adhesion and Migration. Advanced Engineering Materials, 2011, 13, B395.	3.5	18
236	Biocompatible nanoparticles sensing the matrix metallo-proteinase 2 for the on-demand release of anticancer drugs in 3D tumor spheroids. Colloids and Surfaces B: Biointerfaces, 2015, 135, 707-716.	5.0	18
237	Mechanosensing of substrate stiffness regulates focal adhesions dynamics in cell. Meccanica, 2017, 52, 3389-3398.	2.0	18
238	Molecularly endowed hydrogel with an <i>in silico</i> -assisted screened peptide for highly sensitive small molecule harvesting. Chemical Communications, 2018, 54, 10088-10091.	4.1	18
239	Design, Synthesis and Characterization of Novel Co-Polymers Decorated with Peptides for the Selective Nanoparticle Transport across the Cerebral Endothelium. Molecules, 2018, 23, 1655.	3.8	18
240	A thermoporoelastic model for fluid transport in tumour tissues. Journal of the Royal Society Interface, 2019, 16, 20190030.	3.4	18
241	Tuning the three-dimensional architecture of supercritical CO2 foamed PCL scaffolds by a novel mould patterning approach. Materials Science and Engineering C, 2020, 109, 110518.	7.3	18
242	A Microfluidic Platform to design Multimodal PEG - crosslinked Hyaluronic Acid Nanoparticles (PEG-cHANPs) for diagnostic applications. Scientific Reports, 2020, 10, 6028.	3.3	18
243	High frequency viscoelastic behaviour of low molecular weight hyaluronic acid water solutions. Biorheology, 2007, 44, 403-18.	0.4	18
244	Preparation and physico-chemical characterisation of microporous polysaccharidic hydrogels. Journal of Materials Science: Materials in Medicine, 2004, 15, 463-467.	3.6	17
245	Modeling of charge transfer processes to understand photophysical signatures: The case of Rhodamine 110. Chemical Physics Letters, 2014, 610-611, 148-152.	2.6	17
246	Vasculogenic potential evaluation of bottom-up, PCL scaffolds guiding early angiogenesis in tissue regeneration. Journal of Materials Science: Materials in Medicine, 2016, 27, 107.	3.6	17
247	3D stromal tissue equivalent affects intestinal epithelium morphogenesis in vitro. Biotechnology and Bioengineering, 2018, 115, 1062-1075.	3.3	17
248	CD4+versusCD8+ T-lymphocyte identification in an integrated microfluidic chip using light scattering and machine learning. Lab on A Chip, 2019, 19, 3888-3898.	6.0	17
249	Adhesion and Migration Response to Radiation Therapy of Mammary Epithelial and Adenocarcinoma Cells Interacting with Different Stiffness Substrates. Cancers, 2020, 12, 1170.	3.7	17
250	Inhibition of migration and invasion of carcinoma cells by urokinaseâ€derived antagonists of αvβ5 integrin activation. International Journal of Cancer, 2009, 124, 316-325.	5.1	16
251	Design of novel 3D gene activated PEG scaffolds with ordered pore structure. Journal of Materials Science: Materials in Medicine, 2010, 21, 1013-1020.	3.6	16
252	Pore structure and swelling behavior of porous hydrogels prepared via a thermal reverseâ€casting technique. Journal of Applied Polymer Science, 2011, 122, 3651-3660.	2.6	16

#	Article	IF	CITATIONS
253	Biostability enhancement of oil core â€" polysaccharide multilayer shell via photoinitiator free thiol-ene â€~click' reaction. Colloids and Surfaces B: Biointerfaces, 2016, 142, 281-289.	5.0	16
254	Update on Renal Replacement Therapy: Implantable Artificial Devices and Bioengineered Organs. Tissue Engineering - Part B: Reviews, 2016, 22, 330-340.	4.8	16
255	High sensitive and direct fluorescence detection of single viral DNA sequences by integration of double strand probes onto microgels particles. Analyst, The, 2016, 141, 1250-1256.	3.5	16
256	Metal enhanced fluorescence on super-hydrophobic clusters of gold nanoparticles. Microelectronic Engineering, 2017, 175, 7-11.	2.4	16
257	PEGylated crosslinked hyaluronic acid nanoparticles designed through a microfluidic platform for nanomedicine. Nanomedicine, 2017, 12, 2211-2222.	3.3	16
258	Controlling the orientation of a cell-synthesized extracellular matrix by using engineered gelatin-based building blocks. Biomaterials Science, 2018, 6, 2084-2091.	5.4	16
259	Oil Core–PEG Shell Nanocarriers for In Vivo MRI Imaging. Advanced Healthcare Materials, 2019, 8, e1801313.	7.6	16
260	Photoactive Interfaces for Spatioâ€Temporal Guidance of Mesenchymal Stem Cell Fate. Advanced Healthcare Materials, 2020, 9, e2000470.	7.6	16
261	Experimental and Theoretical Studies on Sustainable Synthesis of Gold Sol Displaying Dichroic Effect. Nanomaterials, 2021, 11, 236.	4.1	16
262	A Closed Form for Fluorescence Correlation Spectroscopy Experiments in Submicrometer Structures. Analytical Chemistry, 2010, 82, 9663-9670.	6.5	15
263	Integration of binding peptide selection and multifunctional particles as tool-box for capture of soluble proteins in serum. Journal of the Royal Society Interface, 2014, 11, 20140718.	3.4	15
264	Is microrheometry affected by channel deformation?. Biomicrofluidics, 2016, 10, 043501.	2.4	15
265	A qualitative model to identify non-radiative decay channels: the spiropyran as case study. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	15
266	In Vitro Organotypic Systems to Model Tumor Microenvironment in Human Papillomavirus (HPV)-Related Cancers. Cancers, 2020, 12, 1150.	3.7	15
267	Effects of surface nanopatterning on internalization and amyloid aggregation of the fragment 264-277 of Nucleophosmin 1. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111439.	5.0	15
268	A theoretical and experimental study on l-tyrosine and citrate mediated sustainable production of near infrared absorbing twisted gold nanorods. Materials Science and Engineering C, 2021, 118, 111515.	7.3	15
269	Review on Computer-Aided Design and Manufacturing of Drug Delivery Scaffolds for Cell Guidance and Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 682133.	4.1	15
270	Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis. Analyst, The, 2012, 137, 5076.	3.5	14

#	Article	IF	Citations
271	Novel Strategies to Engineering Biological Tissue In Vitro. Methods in Molecular Biology, 2012, 811, 223-244.	0.9	14
272	Tuning Gold Nanoparticles Interfaces by Specific Peptide Interaction for Surface Enhanced Raman Spectroscopy (SERS) and Separation Applications. ACS Applied Materials & Enhanced Raman 7915-7922.	8.0	14
273	Confined mesoporous silica membranes for albumin zero-order release. Microporous and Mesoporous Materials, 2013, 167, 71-75.	4.4	14
274	Bioinspired Oil Core/Silica Shell Nanocarriers with Tunable and Multimodal Functionalities. Advanced Healthcare Materials, 2015, 4, 2688-2698.	7.6	14
275	<i>In vitro</i> three-dimensional models in cancer research: a review. International Materials Reviews, 2015, 60, 297-311.	19.3	14
276	Surface decoration with gH625-membranotropic peptides as a method to escape the endo-lysosomal compartment and reduce nanoparticle toxicity. Nanotechnology, 2015, 26, 415101.	2.6	14
277	Spatiotemporal Evolution of the Wound Repairing Process in a 3D Human Dermis Equivalent. Advanced Healthcare Materials, 2017, 6, 1601422.	7.6	14
278	Xâ€rays effects on cytoskeleton mechanics of healthy and tumor cells. Cytoskeleton, 2017, 74, 40-52.	2.0	14
279	Quick liquid packaging: Encasing water silhouettes by three-dimensional polymer membranes. Science Advances, 2019, 5, eaat5189.	10.3	14
280	Experimental Studies and Modeling of the Degradation Process of Poly(Lactic-co-Glycolic Acid) Microspheres for Sustained Protein Release. Polymers, 2020, 12, 2042.	4.5	14
281	Mechanical phenotyping of breast cell lines by in-flow deformation-dependent dynamics under tuneable compressive forces. Lab on A Chip, 2020, 20, 4611-4622.	6.0	14
282	A novel engineered dermis for in vitro in photodamage research. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2276-2285.	2.7	13
283	In vitro study of intestinal epithelial interaction with engineered oil in water nanoemulsions conveying curcumin. Colloids and Surfaces B: Biointerfaces, 2018, 164, 232-239.	5.0	13
284	On the influence of surface patterning on tissue self-assembly and mechanics. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1621-1633.	2.7	13
285	Solvent and melting induced microspheres sintering techniques: a comparative study of morphology and mechanical properties. Journal of Materials Science: Materials in Medicine, 2011, 22, 2019-2028.	3.6	12
286	"On–Off―RGD Signaling Using Azobenzene Photoswitchâ€Modified Surfaces. ChemPlusChem, 2015, 80, 1547-1555.	2.8	12
287	Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model. Colloids and Surfaces B: Biointerfaces, 2016, 144, 250-256.	5.0	12
288	Nanotechnologies for tissue engineering and regeneration. , 2018, , 93-206.		12

#	Article	IF	Citations
289	A functional connection between dyskerin and energy metabolism. Redox Biology, 2018, 14, 557-565.	9.0	12
290	Regulating Fibroblast Shape and Mechanics through Photoresponsive Surfaces with Concentric Circular Topographic Patterns. Advanced Materials Interfaces, 2018, 5, 1800890.	3.7	12
291	New Strategies in the Design of Paramagnetic CAs. Contrast Media and Molecular Imaging, 2020, 2020, 1-10.	0.8	12
292	Effects of pulsating heat source on interstitial fluid transport in tumour tissues. Journal of the Royal Society Interface, 2020, 17, 20200612.	3.4	12
293	Nanomechanics of a fibroblast suspended using point-like anchors reveal cytoskeleton formation. RSC Advances, 2016, 6, 24245-24249.	3.6	11
294	Effect of crosslinking agent to design nanostructured hyaluronic acid-based hydrogels with improved relaxometric properties. Carbohydrate Polymers, 2019, 222, 114991.	10.2	11
295	Silk-ELR co-recombinamer covered stents obtained by electrospinning. International Journal of Energy Production and Management, 2019, 6, 21-28.	3.7	11
296	Induced Pluripotent Stem Cells as Vasculature Forming Entities. Journal of Clinical Medicine, 2019, 8, 1782.	2.4	11
297	Modeling the epithelial-mesenchymal transition process in a 3D organotypic cervical neoplasia. Acta Biomaterialia, 2020, 116, 209-222.	8.3	11
298	Bioinspired Design of Novel Microscaffolds for Fibroblast Guidance toward <i>In Vitro</i> Tissue Building. ACS Applied Materials & Interfaces, 2021, 13, 9589-9603.	8.0	11
299	Self-assembly of bio-inspired heterochiral peptides. Bioorganic Chemistry, 2021, 114, 105047.	4.1	11
300	Multimodal imaging for a theranostic approach in a murine model of B-cell lymphoma with engineered nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 483-491.	3.3	11
301	In-situ composites: Evaluation of the adhesion between the thermoplastic matrix and the fibers of liquid crystalline polymer. Polymer Composites, 1992, 13, 169-173.	4.6	10
302	Defining an optimal stromal derived factor†presentation for effective recruitment of mesenchymal stem cells in 3D. Biotechnology and Bioengineering, 2014, 111, 2303-2316.	3.3	10
303	Threeâ€dimensional cellular distribution in polymeric scaffolds for bone regeneration: a microCT analysis compared to SEM, CLSM and DNA content. Journal of Microscopy, 2014, 255, 20-29.	1.8	10
304	X-RAY IRRADIATION AFFECTS MORPHOLOGY, PROLIFERATION AND MIGRATION RATE OF HEALTHY AND CANCER CELLS. Journal of Mechanics in Medicine and Biology, 2015, 15, 1540022.	0.7	10
305	A micro-perfusion bioreactor for on line investigation of ECM remodeling under hydrodynamic and biochemical stimulation. Lab on A Chip, 2016, 16, 855-867.	6.0	10
306	Commentary on "A Microfluidic Platform to Design Crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for Enhanced MRI― Molecular Imaging, 2017, 16, 153601211770623.	1.4	10

#	Article	IF	CITATIONS
307	Dynamic azopolymeric interfaces for photoactive cell instruction. Biophysics Reviews, 2020, 1, .	2.7	10
308	Engineered \hat{l}^2 -hairpin scaffolds from human prion protein regions: Structural and functional investigations of aggregates. Bioorganic Chemistry, 2020, 96, 103594.	4.1	10
309	Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines, 2021, 9, 1102.	3.2	10
310	Geometrical confinement controls cell, ECM and vascular network alignment during the morphogenesis of 3D bioengineered human connective tissues. Acta Biomaterialia, 2021, 131, 341-354.	8.3	10
311	coupled Hydrodynamic Flow Focusing (cHFF) to Engineer Lipid–Polymer Nanoparticles (LiPoNs) for Multimodal Imaging and Theranostic Applications. Biomedicines, 2022, 10, 438.	3.2	10
312	Hindered Brownian diffusion in a square-shaped geometry. Journal of Colloid and Interface Science, 2015, 447, 25-32.	9.4	9
313	Bimetallic Au/Ag nanoparticle loading on PNIPAAm–VAA–CS8 thermoresponsive hydrogel surfaces using ss-DNA coupling, and their SERS efficiency. RSC Advances, 2015, 5, 13507-13512.	3.6	9
314	Fabrication of a modular hybrid chip to mimic endothelial-lined microvessels in flow conditions. Journal of Micromechanics and Microengineering, 2017, 27, 035014.	2.6	9
315	Conformational consequences of NPM1 rare mutations: An aggregation perspective in Acute Myeloid Leukemia. Bioorganic Chemistry, 2021, 113, 104997.	4.1	9
316	Toxic effects of SiO2NPs in early embryogenesis of Xenopus laevis. Chemosphere, 2022, 289, 133233.	8.2	9
317	Engineered Bacterial Cellulose Nanostructured Matrix for Incubation and Release of Drug-Loaded Oil in Water Nanoemulsion. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851893.	4.1	9
318	Distribution and bioactivity of the Ret-specific D4 aptamer in three-dimensional collagen gel cultures. Molecular Cancer Therapeutics, 2008, 7, 3381-3388.	4.1	8
319	Gene-activated and cell-migration guiding PEG matrices based on three dimensional patterning of RGD peptides and DNA complexes. Acta Biomaterialia, 2012, 8, 3228-3240.	8.3	8
320	Biodegradable Material for the Absorption of Organic Compounds and Nanoparticles. Biomacromolecules, 2014, 15, 3321-3327.	5.4	8
321	Core â~' shell microgels with controlled structural properties. Polymer International, 2016, 65, 747-755.	3.1	8
322	In-flow real-time detection of spectrally encoded microgels for miRNA absolute quantification. Biomicrofluidics, 2016, 10, 064114.	2.4	8
323	A straightforward method to produce decellularized dermis-based matrices for tumour cell cultures. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e71-e81.	2.7	8
324	Non-invasive and label-free identification of human natural killer cell subclasses by biophysical single-cell features in microfluidic flow. Lab on A Chip, 2021, 21, 4144-4154.	6.0	8

#	Article	IF	CITATIONS
325	Morphological and Rheological Guided Design for the Microencapsulation Process of Lactobacillus paracasei CBA L74 in Calcium Alginate Microspheres. Frontiers in Bioengineering and Biotechnology, 2021, 9, 660691.	4.1	8
326	Cell Membrane-Coated Oil in Water Nano-Emulsions as Biomimetic Nanocarriers for Lipophilic Compounds Conveyance. Pharmaceutics, 2021, 13, 1069.	4.5	8
327	Type F mutation of nucleophosmin 1 Acute Myeloid Leukemia: A tale of disorder and aggregation. International Journal of Biological Macromolecules, 2021, 188, 207-214.	7.5	8
328	A Method for Evaluating Nanoparticle Transport Through the Blood–Brain Barrier In Vitro. Methods in Molecular Biology, 2014, 1141, 185-199.	0.9	8
329	Confined Gelatin Dehydration as a Viable Route To Go Beyond Micromilling Resolution and Miniaturize Biological Assays. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12075-12081.	8.0	7
330	Engineered cardiac micromodules for the <i>in vitro</i> fabrication of 3D endogenous macro-tissues. Biofabrication, 2016, 8, 025014.	7.1	7
331	One-step scalable fluorescent microgel bioassay for the ultrasensitive detection of endogenous viral miR-US4-5p. Analyst, The, 2019, 144, 1369-1378.	3.5	7
332	Irreversible photo-Fenton-like triggered agglomeration of ultra-small gold nanoparticles capped with crosslinkable materials. Nanoscale Advances, 2019, 1, 2146-2150.	4.6	7
333	Intrinsic Abnormalities of Cystic Fibrosis Airway Connective Tissue Revealed by an In Vitro 3D Stromal Model. Cells, 2020, 9, 1371.	4.1	7
334	Topographic Cues Impact on Embryonic Stem Cell Zscan4-Metastate. Frontiers in Bioengineering and Biotechnology, 2020, 8, 178.	4.1	7
335	Easy Surface Functionalization and Bioconjugation of Peptides as Capture Agents of a Microfluidic Biosensing Platform for Multiplex Assay in Serum. Bioconjugate Chemistry, 2021, 32, 1593-1601.	3.6	7
336	Wide-range viscoelastic compression forces in microfluidics to probe cell-dependent nuclear structural and mechanobiological responses. Journal of the Royal Society Interface, 2022, 19, 20210880.	3.4	7
337	Bioengineered Wound Healing Skin Models: The Role of Immune Response and Endogenous ECM to Fully Replicate the Dynamic of Scar Tissue Formation In Vitro. Bioengineering, 2022, 9, 233.	3.5	7
338	Fluorescence Correlation Spectroscopy in Semiadhesive Wall Proximity. Analytical Chemistry, 2011, 83, 8101-8107.	6.5	6
339	Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the PLLA/Dioxane/Water Ternary System for Applications in the Biomedical Field. Langmuir, 2015, 31, 13003-13010.	3.5	6
340	Cell mechanosensory recognizes ligand compliance at biomaterial interface. Biomaterials, 2016, 76, 282-291.	11.4	6
341	Numerical simulations of the separation of elastic particles in a T-shaped bifurcation. Journal of Non-Newtonian Fluid Mechanics, 2016, 233, 75-84.	2.4	6
342	Comparative spallation performance of silicone versus Tygon extracorporeal circulation tubing. Interactive Cardiovascular and Thoracic Surgery, 2019, 29, 685-692.	1,1	6

#	Article	IF	CITATIONS
343	A High Throughput Approach Based on Dynamic High Pressure for the Encapsulation of Active Compounds in Exosomes for Precision Medicine. International Journal of Molecular Sciences, 2021, 22, 9896.	4.1	6
344	Soft Tissues Characteristics and Strategies for Their Replacement and Regeneration. , 2009, , 1-40.		6
345	Biocompatible, photo-responsive layer-by-layer polymer nanocapsules with an oil core: <i>in vitro</i> and <i>in vivo</i> study. Journal of the Royal Society Interface, 2022, 19, 20210800.	3.4	6
346	Shedding light on azopolymer brush dynamics by fluorescence correlation spectroscopy. Soft Matter, 2016, 12, 7102-7111.	2.7	5
347	Small Oligonucleotides Detection in Three-Dimensional Polymer Network of DNA-PEG Hydrogels. Gels, 2021, 7, 90.	4.5	5
348	PEG-based cleavable hydrogel microparticles with controlled porosity for permiselective trafficking of biomolecular complexes in biosensing applications. Journal of Materials Chemistry B, 2022, 10, 1980-1990.	5.8	5
349	ECM Mechanoregulation in Malignant Pleural Mesothelioma. Frontiers in Bioengineering and Biotechnology, 2022, 10, 797900.	4.1	5
350	Preliminary studies on noncovalent hyperbranched polymers based on PNA and DNA building blocks. Journal of Peptide Science, 2009, 15, 647-653.	1.4	4
351	Non-spherical gelatin particle in two phases microfluidic system. Microelectronic Engineering, 2013, 111, 339-342.	2.4	4
352	Room Temperature Consolidation of a Porous Poly(lactic-co-glycolic acid) Matrix by the Addition of Maltose to the Water-in-Oil Emulsion. Materials, 2016, 9, 420.	2.9	4
353	Confinement of a polymer chain: An entropic study by Monte Carlo method. AICHE Journal, 2018, 64, 416-426.	3.6	4
354	Effect of peristaltic-like movement on bioengineered intestinal tube. Materials Today Bio, 2019, 4, 100027.	5.5	4
355	New Trends in Precision Medicine: A Pilot Study of Pure Light Scattering Analysis as a Useful Tool for Non-Small Cell Lung Cancer (NSCLC) Diagnosis. Journal of Personalized Medicine, 2021, 11, 1023.	2.5	4
356	Tuning of Hydrogel Architectures by Ionotropic Gelation in Microfluidics: Beyond Batch Processing to Multimodal Diagnostics. Biomedicines, 2021, 9, 1551.	3.2	4
357	Nanoscaffolds for neural regenerative medicine. , 2020, , 47-88.		4
358	Computer-aided patterning of PCL microspheres to build modular scaffolds featuring improved strength and neovascularized tissue integration. Biofabrication, 2022, 14, 045002.	7.1	4
359	DEVELOPMENT OF HIGHLY ORIENTED POROUS STRUCTURES BY PCLâ^•PEO CO-CONTINUOUS BLENDS. AIP Conference Proceedings, 2008, , .	0.4	3
360	Nano-engineered bioactive interfaces . Interface Focus, 2014, 4, 20130065.	3.0	3

#	Article	IF	Citations
361	Bioactivated Materials for Cell and Tissue Guidance. , 2014, , 137-150.		3
362	Dynamic Cell Substrates: Spatio-Temporal Control of Dynamic Topographic Patterns on Azopolymers for Cell Culture Applications (Adv. Funct. Mater. 42/2016). Advanced Functional Materials, 2016, 26, 7743-7743.	14.9	3
363	A BIOPHYSICAL ANALYSIS TO ASSESS X-RAY SENSITIVITY OF HEALTHY AND TUMOUR CELLS. Radiation Protection Dosimetry, 2019, 183, 116-120.	0.8	3
364	Decellularized matrices for tumor cell modeling. Methods in Cell Biology, 2020, 157, 169-183.	1.1	3
365	Active targeting of cancer cells by CD44 binding peptide-functionalized oil core-based nanocapsules. RSC Advances, 2021, 11, 24487-24499.	3.6	3
366	Osteogenic differentiation of CD271(+) cells from rabbit bone marrow cultured on three phase PCL/TZ-HA bioactive scaffolds: comparative study with mesenchymal stem cells (MSCs). International Journal of Clinical and Experimental Medicine, 2015, 8, 13154-62.	1.3	3
367	Hydrogel Microparticles for Fluorescence Detection of miRNA in Mix-Read Bioassay. Sensors, 2021, 21, 7671.	3.8	3
368	A novel approach for grinding operation scale-up. Chemical Engineering Science, 2000, 55, 1347-1356.	3.8	2
369	Monitoring oxygen uptake in 3D tissue engineering scaffolds by phosphorescence quenching microscopy. Biotechnology Progress, 2010, 26, 1494-1500.	2.6	2
370	Accounting for misalignments and thermal fluctuations in fluorescence correlation spectroscopy experiments on membranes. Analyst, The, 2013, 138, 1674.	3.5	2
371	Small angle light scattering characterization of single micrometric particles in microfluidic flows. Proceedings of SPIE, 2013, , .	0.8	2
372	Investigation on 3D morphological changes of in vitro cells through digital holographic microscopy. Proceedings of SPIE, 2013, , .	0.8	2
373	Drug Delivery: Shuttleâ€Mediated Nanoparticle Delivery to the Blood–Brain Barrier (Small 6/2013). Small, 2013, 9, 806-806.	10.0	2
374	Temperature Driven Macromolecule Separation by Nanoconfinement. Macromolecules, 2014, 47, 8754-8760.	4.8	2
375	Research in Biomaterials and Tissue Engineering: Achievements and perspectives. IEEE Pulse, 2015, 6, 39-43.	0.3	2
376	Nanoengineered materials to control cell fate. Nanomedicine, 2016, 11, 993-996.	3.3	2
377	Bioreactors for Cell Culture Systems and Organ Bioengineering. , 2017, , 889-899.		2
378	The effects of exterior boundary conditions on a internally heated tumor tissue with a thermoporoelastic model. Journal of Biomechanics, 2020, 113, 110122.	2.1	2

#	Article	IF	Citations
379	Prolonged activity of a recombinant manganese superoxide dismutase through a formulation of polymeric multi-layer nanoassemblies targeting cancer cells. European Journal of Pharmaceutical Sciences, 2021, 162, 105825.	4.0	2
380	Investigation of Biophysical Migration Parameters for Normal Tissue and Metastatic Cancer Cells After Radiotherapy Treatment. Frontiers in Physics, 2020, 8, .	2.1	2
381	Multifunctional Polymer Based Structures for Human Tissues Reconstruction., 2011,, 91-112.		1
382	A new 3D tracking method for cell mechanics investigation exploiting the capabilities of digital holography in microscopy. , 2014, , .		1
383	Multilayered Nanocarrier Systems: Bioinspired Oil Core/Silica Shell Nanocarriers with Tunable and Multimodal Functionalities (Adv. Healthcare Mater. 17/2015). Advanced Healthcare Materials, 2015, 4, 2736-2736.	7.6	1
384	Investigation on cytoskeleton dynamics for non-adherent cells under point-like stimuli., 2015,,.		1
385	Cells characterization in microfluidic flows by small angle light scattering and 3D holographic technique. Proceedings of SPIE, 2015, , .	0.8	1
386	Lab on chip optical imaging of biological sample by quantitative phase microscopy. , 2015, , .		1
387	Design and optimization of polymer nanoshuttles for nanomedicine. , 2015, , .		1
388	Sparsity promoting automatic focusing in digital holography. , 2015, , .		1
389	Red blood cell three-dimensional morphometry by quantitative phase microscopy. , 2015, , .		1
390	Morphology modulation of gasâ€foamed, micrometric, hollow polystyrene particles. Journal of Applied Polymer Science, 2016, 133, .	2.6	1
391	Easy-to-fill asymmetric polymeric micro-reservoirs. RSC Advances, 2016, 6, 64140-64146.	3.6	1
392	Effects of high energy X-rays on cell morphology and functions. , 2017, , .		1
393	Multifunctional Microgels for Direct, Multiplexed and High Sensitive Detection. Procedia Technology, 2017, 27, 31-32.	1.1	1
394	Dynamic cell instructive platforms. , 2021, , 171-217.		1
395	Barriers to Drug Delivery in Cancer: Clinical Implications. , 2009, , 81-104.		1
396	Morphological analysis framework of living cells by digital holography. , 2014, , .		1

#	Article	IF	CITATIONS
397	Optical tweezers as a tool for microrheology of simplex and complex fluids. , 2004, 5514, 487.		O
398	Micro and Macro Characterization of PEOâ€PPOâ€PEO Triblocks Hydrogels. Macromolecular Symposia, 2008, 266, 92-95.	0.7	0
399	Porous Polyelectrolyte Hydrogels With Enhanced Swelling Properties Prepared Via Thermal Reverse Casting Technique. , 2010, , .		O
400	A new iterative Fourier transform algorithm for optimal design in holographic optical tweezers. , 2012, , .		0
401	New method of 3D tracking of in vitro cells by digital holographic microscopy. , 2013, , .		O
402	Sparsity-based denoising method of wrapped-phase reconstructions in digital holography. , 2013, , .		0
403	A new 3D tracking method exploiting the capabilities of digital holography in microscopy. Proceedings of SPIE, 2013, , .	0.8	O
404	New method of holographic three-dimensional tracking of living cells exploiting their morphological properties. , $2013, , .$		0
405	Cell mechanics investigation by digital holographic microscopy. Proceedings of SPIE, 2013, , .	0.8	O
406	Regenerative Medicine as an Industry. , 2014, , 969-976.		0
407	Letter to the editor regarding recent article by Wu et al. [J. Theor. Biol. 355 (2014) pp. 194–207]. Journal of Theoretical Biology, 2014, 363, 453.	1.7	O
408	Investigation on cytoskeleton dynamics for no-adherent cells subjected to point-like stimuli by digital holographic microscopy and holographic optical trapping. Proceedings of SPIE, 2014, , .	0.8	0
409	Three-dimensional holographic tracking approach based on full-field complex wavefront matching. , 2014, , .		O
410	Red blood cell as optofluidic tunable lens. , 2015, , .		0
411	Wavefronts matching: a novel paradigm for three-dimensional holographic particle tracking. Proceedings of SPIE, 2015, , .	0.8	O
412	Microgels for multiplex and direct fluorescence detection. Proceedings of SPIE, 2015, , .	0.8	0
413	Holographic quantitative imaging of sample hidden by turbid medium or occluding objects. Proceedings of SPIE, 2015, , .	0.8	0
414	Holographic 3D particles tracking methods for bio-microfluidic applications. , 2015, , .		O

#	Article	IF	Citations
415	Imaging and characterization of surface relief gratings on azopolymer by digital holographic microscopy. , 2015, , .		O
416	Peripheral blood mononuclear cells analysis in microfluidic flow by coherent imaging tools. Proceedings of SPIE, 2017, , .	0.8	0
417	HYPO- AND HYPERTHERMIA EFFECTS ON MACROSCOPIC FLUID TRANSPORT IN TUMORS. Computational Thermal Sciences, 2019, 11, 119-130.	0.9	0
418	Role of the cell-material interface on collective cell behavior., 2021,, 113-141.		0
419	Principles of design and engineering of cell instructive surfaces. , 2021, , 143-170.		0
420	The dynamics of the cell-material interface. , 2021, , 43-64.		0
421	Material cytoskeleton crosstalk., 2021,, 65-112.		0
422	Open Porous Composite Monoliths for Biomedical Applications via Photocrosslinking of Low Internal Phase Nano-Emulsion Templates. Applied Sciences (Switzerland), 2021, 11, 5338.	2.5	0
423	Key determinants of cell-material interactions. , 2021, , 5-41.		0
424	Role of Spatial Distribution of Matricellular Cues in Controlling Cell Functions. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 207-232.	0.5	0
425	Studying cell-material interaction by new particle tracking in digital holography. , 2014, , .		0
426	Soft Matter Composites Interfacing with Biomolecules, Cells, and Tissues. , 2014, , 29-76.		0
427	Holographic Three-Dimensional Tracking of Micro-objects Exploiting Their Morphological Properties. , 2014, , 555-558.		0
428	Lab on Chip 3D Holographic Imaging. , 2014, , .		0
429	3D Full Morphometric Assessment by Holographic Imaging at Lab-on-Chip Scale for Biomedical Applications. , 2014, , .		0
430	On the role of sparsity in digital holography. , 2015, , .		0
431	Advanced label-free cellular identification in flow by collaborative coherent imaging techniques. , 2019, , .		0
432	Biophysical analysis of in-flow deformed lymphocytes by static light scattering., 2021,,.		0