
## **Catherine Mevel**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3561300/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF               | CITATIONS          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 1  | Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus - Geoscience, 2003, 335, 825-852.                                                                                                                          | 1.2              | 363                |
| 2  | Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N).<br>Geology, 1995, 23, 49.                                                                                                         | 4.4              | 324                |
| 3  | Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45′N. Geochemistry, Geophysics, Geosystems, 2003, 4, .                                                          | 2.5              | 234                |
| 4  | Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.                                                             | 2.5              | 187                |
| 5  | Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit<br>(Mid-Atlantic Ridge at 23 degrees N). Economic Geology, 1993, 88, 2018-2036.                                                           | 3.8              | 172                |
| 6  | Hydrothermal activity along the southwest Indian ridge. Nature, 1998, 395, 490-493.                                                                                                                                                    | 27.8             | 146                |
| 7  | Emplacement of deep crustal and mantle rocks on the west median valley wall of the MARK area (MAR,) Tj ETQq1                                                                                                                           | 1_0,78431<br>2.2 | 14 rgBT /Ov<br>128 |
| 8  | Characteristics and evolution of the segmentation of the Mid-Atlantic Ridge between 20°N and 24°N<br>during the last 10 million years. Earth and Planetary Science Letters, 1995, 129, 55-71.                                          | 4.4              | 125                |
| 9  | Direct observation of a section through slow-spreading oceanic crust. Nature, 1989, 337, 726-729.                                                                                                                                      | 27.8             | 124                |
| 10 | Helium and methane measurements in hydrothermal fluids from the mid-Atlantic ridge: The Snake Pit<br>site at 23°N. Earth and Planetary Science Letters, 1991, 106, 17-28.                                                              | 4.4              | 109                |
| 11 | Isotopic portrayal of the Earth's upper mantle flow field. Nature, 2007, 447, 1069-1074.                                                                                                                                               | 27.8             | 104                |
| 12 | A discontinuity in mantle composition beneath the southwest Indian ridge. Nature, 2003, 421, 731-733.                                                                                                                                  | 27.8             | 98                 |
| 13 | Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights<br>into oceanic serpentinization and subduction processes. Geochimica Et Cosmochimica Acta, 2008, 72,<br>126-139.                  | 3.9              | 97                 |
| 14 | Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault<br>zones (13°20′N and 13°30′N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 2017, 18, 14.                             | 51-1482.         | 94                 |
| 15 | Zircon Dating of Oceanic Crustal Accretion. Science, 2009, 323, 1048-1050.                                                                                                                                                             | 12.6             | 88                 |
| 16 | Amphibolite facies conditions in the oceanic crust: example of amphibolitized flaser-gabbro and<br>amphibolites from the Chenaillet ophiolite massif (Hautes Alpes, France). Earth and Planetary Science<br>Letters, 1978, 39, 98-108. | 4.4              | 73                 |
| 17 | Additional 40Ar-39Ar dating of the basement and the alkaline volcanism of Gorringe Bank (Atlantic) Tj ETQq1 1 0.                                                                                                                       | 784314 rg<br>4.4 | gBT /Overloo<br>73 |
| 18 | FUJI Dome: A large detachment fault near 64°E on the very slow-spreading southwest Indian Ridge.<br>Geochemistry, Geophysics, Geosystems, 2003, 4, .                                                                                   | 2.5              | 60                 |

CATHERINE MEVEL

| #  | Article                                                                                                                                                                                      | IF              | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 19 | Amphibolitized sheared gabbros from ophiolites as indicators of the evolution of the oceanic crust:<br>Bay of Islands, Newfoundland. Earth and Planetary Science Letters, 1982, 61, 151-165. | 4.4             | 59            |
| 20 | Metamorphism in oceanic layer 3, Gorringe Bank, eastern Atlantic. Contributions To Mineralogy and<br>Petrology, 1988, 100, 496-509.                                                          | 3.1             | 56            |
| 21 | An example of a recent accretion on the Mid-Atlantic Ridge: the Snake Pit neovolcanic ridge (MARK) Tj ETQq1 1 (                                                                              | 0.784314<br>2.2 | rgBT /Overloc |
| 22 | Metasomatic hydrous fluids in amphibole peridotites from Zabargad Island (Red Sea). Earth and<br>Planetary Science Letters, 1993, 120, 187-205.                                              | 4.4             | 48            |
| 23 | Evolution of oceanic gabbros from DSDP Leg 82: influence of the fluid phase on metamorphic crystallizations. Earth and Planetary Science Letters, 1987, 83, 67-79.                           | 4.4             | 44            |
| 24 | Magnetic signatures of serpentinization at ophiolite complexes. Geochemistry, Geophysics,<br>Geosystems, 2016, 17, 2969-2986.                                                                | 2.5             | 44            |
| 25 | The geodynamic evolution of the South-Tethyan, margin in Zanskar, NW-Himalaya, as revealed by the Spongtang ophiolitic melanges. Geodinamica Acta, 1987, 1, 283-296.                         | 2.2             | 44            |
| 26 | Stretching of the deep crust at the slow-spreading Southwest Indian Ridge. Tectonophysics, 1991, 190, 73-94.                                                                                 | 2.2             | 42            |
| 27 | Clinopyroxenes in Mesozoic pillow lavas from the French Alps: influence of cooling rate on compositional trends. Earth and Planetary Science Letters, 1976, 32, 158-164.                     | 4.4             | 41            |
| 28 | Occurrence of pumpellyite in hydrothermally altered basalts from the Vema fracture zone (mid-Atlantic ridge). Contributions To Mineralogy and Petrology, 1981, 76, 386-393.                  | 3.1             | 40            |
| 29 | TOBI sidescan sonar imagery of the very slow-spreading Southwest Indian Ridge: evidence for along-axis magma distribution. Earth and Planetary Science Letters, 2002, 199, 81-95.            | 4.4             | 40            |
| 30 | Observation of sections of oceanic crust and mantle cropping out on the southern wall of Kane FZ (N. Atlantic). Terra Nova, 1994, 6, 143-148.                                                | 2.1             | 39            |
| 31 | A geological cross-section of the Vema fracture zone transverse ridge, Atlantic ocean. Journal of<br>Geodynamics, 1991, 13, 97-117.                                                          | 1.6             | 37            |
| 32 | Chromian jadeite, phengite, pumpellyite, and lawsonite in a high–pressure metamorphosed gabbro<br>from the French Alps. Mineralogical Magazine, 1980, 43, 979-984.                           | 1.4             | 33            |
| 33 | Atypically depleted upper mantle component revealed by Hf isotopes at Lucky Strike segment. Chemical<br>Geology, 2013, 341, 128-139.                                                         | 3.3             | 29            |
| 34 | The gneiss of Zabargad Island: deep crust of a rift. Tectonophysics, 1988, 150, 209-227.                                                                                                     | 2.2             | 28            |
| 35 | In-situ study of the eastern ridge-transform intersection of the Vema Fracture Zone. Tectonophysics, 1991, 190, 55-71.                                                                       | 2.2             | 22            |
| 36 | Zabargad peridotite: Evidence for multistage metasomatism during Red Sea rifting. Geology, 1991, 19,<br>722.                                                                                 | 4.4             | 21            |

CATHERINE MEVEL

| #  | Article                                                                                                                                                                                                                        | IF    | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 37 | First direct observation of coseismic slip and seafloor rupture along a submarine normal fault and implications for fault slip history. Earth and Planetary Science Letters, 2016, 450, 96-107.                                | 4.4   | 21        |
| 38 | Pervasive silicification and hanging wall overplating along the 13°20′N oceanic detachment fault<br>( <scp>M</scp> idâ€ <scp>A</scp> tlantic <scp>R</scp> idge). Geochemistry, Geophysics, Geosystems, 2017,<br>18, 2028-2053. | 2.5   | 21        |
| 39 | The MARâ€Vema Fracture Zone intersection surveyed by deep submersible Nautile. Terra Nova, 1990, 2,<br>68-73.                                                                                                                  | 2.1   | 16        |
| 40 | Intraoceanic tectonism on the Gorringe Bank: observations by submersible. Geological Society Special Publication, 1984, 13, 113-120.                                                                                           | 1.3   | 15        |
| 41 | Hydrothermal alteration studies of gabbros from Northern Central Indian Ridge and their geodynamic implications. Journal of Earth System Science, 2009, 118, 659-676.                                                          | 1.3   | 12        |
| 42 | The occurrence of deerite in highly oxidizing conditions within the ?schistes lustr�s?of eastern<br>Corsica. Journal of Metamorphic Geology, 1986, 4, 385-399.                                                                 | 3.4   | 6         |
| 43 | Occurrence and significance of gneissic amphibolites in the Vema fracture zone, equatorial<br>Mid-Atlantic Ridge. Geological Society Special Publication, 1984, 13, 121-130.                                                   | 1.3   | 5         |
| 44 | Oceanographic Signatures and Pressure Monitoring of Seafloor Vertical Deformation in<br>Near-coastal, Shallow Water Areas: A Case Study from Santorini Caldera. Marine Geodesy, 2016, 39,<br>401-421.                          | 2.0   | 5         |
| 45 | Fluid Circulation Along an Oceanic Detachment Fault: Insights From Fluid Inclusions in Silicified<br>Brecciated Fault Rocks (Midâ€Atlantic Ridge at 13°20′N). Geochemistry, Geophysics, Geosystems, 2021, 22, .                | . 2.5 | 5         |
| 46 | Deerite in highly oxidizing conditions: a reply. Journal of Metamorphic Geology, 1987, 5, 557-560.                                                                                                                             | 3.4   | 0         |
| 47 | Inception and demise of a Neoproterozoic ocean basin: evidence from the Ougda complex, western<br>Hoggar (Algeria). Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1996, 85, 619-631.                             | 1.3   | 0         |