
Zhibin Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3561084/publications.pdf Version: 2024-02-01

7hirin Yin

#	Article	IF	CITATIONS
1	Stereoselective toxicity mechanism of neonicotinoid dinotefuran in honeybees: New perspective from a spatial metabolomics study. Science of the Total Environment, 2022, 809, 151116.	3.9	18
2	Environmentally-driven metabolite and lipid variations correspond to altered bioactivities of black wolfberry fruit. Food Chemistry, 2022, 372, 131342.	4.2	14
3	Single-cell mass spectrometry imaging of TiO2 nanoparticles with subcellular resolution. Chinese Journal of Analytical Chemistry, 2022, 50, 100085.	0.9	1
4	Sample preparation optimization of insects and zebrafish for whole-body mass spectrometry imaging. Analytical and Bioanalytical Chemistry, 2022, 414, 4777-4790.	1.9	5
5	Plasmonic Gold Nanoshell-Assisted Laser Desorption/Ionization Mass Spectrometry for Small-Biomolecule Analysis and Tissue Imaging. ACS Applied Nano Materials, 2022, 5, 9633-9645.	2.4	11
6	Spatially resolved metabolomics reveals variety-specific metabolic changes in banana pulp during postharvest senescence. Food Chemistry: X, 2022, 15, 100371.	1.8	7
7	Discrimination of isomeric monosaccharide derivatives using collision-induced fingerprinting coupled to ion mobility mass spectrometry. Talanta, 2021, 224, 121901.	2.9	9
8	Spatiotemporal Visualization of Insecticides and Fungicides within Fruits and Vegetables Using Gold Nanoparticle-Immersed Paper Imprinting Mass Spectrometry Imaging. Nanomaterials, 2021, 11, 1327.	1.9	13
9	Insights into the degradation and toxicity difference mechanism of neonicotinoid pesticides in honeybees by mass spectrometry imaging. Science of the Total Environment, 2021, 774, 145170.	3.9	24
10	Cleavable and tunable cysteine-specific arylation modification with aryl thioethers. Chemical Science, 2021, 12, 5209-5215.	3.7	18
11	Novel Electrophilic Warhead Targeting a Triple-Negative Breast Cancer Driver in Live Cells Revealed by "Inverse Drug Discovery― Journal of Medicinal Chemistry, 2021, 64, 15582-15592.	2.9	10
12	Rapid structural discrimination of IgG antibodies by multicharge-state collision-induced unfolding. RSC Advances, 2021, 11, 36502-36510.	1.7	1
13	Nanoscale Three-Dimensional Imaging of Drug Distributions in Single Cells via Laser Desorption Post-Ionization Mass Spectrometry. Journal of the American Chemical Society, 2021, 143, 21648-21656.	6.6	20
14	Perspective on Advances in Laser-Based High-Resolution Mass Spectrometry Imaging. Analytical Chemistry, 2020, 92, 543-553.	3.2	47
15	High-Pressure Electrospray Ionization Yields Supercharged Protein Complexes from Native Solutions While Preserving Noncovalent Interactions. Analytical Chemistry, 2020, 92, 12312-12321.	3.2	11
16	Micro‣ensed Fiber Laser Desorption Mass Spectrometry Imaging Reveals Subcellular Distribution of Drugs within Single Cells. Angewandte Chemie - International Edition, 2020, 59, 17864-17871.	7.2	52
17	Microâ€Lensed Fiber Laser Desorption Mass Spectrometry Imaging Reveals Subcellular Distribution of Drugs within Single Cells. Angewandte Chemie, 2020, 132, 18020-18027.	1.6	10
18	Nanoparticle-immersed paper imprinting mass spectrometry imaging reveals uptake and translocation mechanism of pesticides in plants. Nano Research, 2020, 13, 611-620.	5.8	47

Zhibin Yin

#	Article	IF	CITATIONS
19	Subcellular chemical imaging of structurally similar acridine drugs by near-field laser desorption/laser postionization mass spectrometry. Nano Research, 2020, 13, 745-751.	5.8	18
20	Single-cell imaging of AuNPs and AgNPs by near-field desorption ionization mass spectrometry. Journal of Analytical Atomic Spectrometry, 2020, 35, 927-932.	1.6	7
21	Innenrücktitelbild: Chemical and Topographical Single ell Imaging by Nearâ€Field Desorption Mass Spectrometry (Angew. Chem. 14/2019). Angewandte Chemie, 2019, 131, 4793-4793.	1.6	0
22	Chemical and Topographical Singleâ€Cell Imaging by Nearâ€Field Desorption Mass Spectrometry. Angewandte Chemie, 2019, 131, 4589-4594.	1.6	12
23	Chemical and Topographical Single ell Imaging by Nearâ€Field Desorption Mass Spectrometry. Angewandte Chemie - International Edition, 2019, 58, 4541-4546.	7.2	62
24	Improved detection sensitivity of elements in solids via laser postionization in laser desorption timeâ€ofâ€flight mass spectrometry. Journal of Mass Spectrometry, 2018, 53, 435-443.	0.7	4
25	Confirmatory surface analysis of equivocal documents with pigment-based gel inks via laser desorption laser postionization mass spectrometry imaging. Analytical and Bioanalytical Chemistry, 2018, 410, 1445-1452.	1.9	11
26	Direct and comprehensive analysis of dyes based on integrated molecular and structural information via laser desorption laser postionization mass spectrometry. Talanta, 2018, 176, 116-123.	2.9	10
27	Approaching Standardless Quantitative Elemental Analysis of Solids: Microsecond Pulsed Glow Discharge and Buffer-Gas-Assisted Laser Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2018, 90, 13222-13228.	3.2	8
28	Depth profiling of nanometer thin layers by laser desorption and laser postionization time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2017, 32, 1878-1884.	1.6	5
29	Microtrace Analysis of Rare Earth Element Residues in Femtogram Quantities by Laser Desorption and Laser Postionization Mass Spectrometry. Analytical Chemistry, 2017, 89, 7455-7461.	3.2	15
30	Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 122, 69-74.	1.5	1
31	Elemental fractionation and matrix effects in laser sampling based spectrometry. Journal of Analytical Atomic Spectrometry, 2016, 31, 358-382.	1.6	55
32	Nanoscale surface analysis that combines scanning probe microscopy and mass spectrometry: A critical review. TrAC - Trends in Analytical Chemistry, 2016, 75, 24-34.	5.8	25
33	Pulsed Microdischarge with Inductively Coupled Plasma Mass Spectrometry for Elemental Analysis on Solid Metal Samples. Analytical Chemistry, 2015, 87, 4871-4878.	3.2	9
34	Probing gas-phase interactions of peptides with "naked―metal ions. Journal of Analytical Atomic Spectrometry, 2015, 30, 1970-1979.	1.6	3
35	Comprehensive analysis of metalloporphyrins via high irradiance laser ionization time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 2014, 29, 1714-1719.	1.6	9
36	Thermal Diffusion Desorption for the Comprehensive Analysis of Organic Compounds. Analytical Chemistry, 2014, 86, 6372-6378.	3.2	5

	Zhibin	Zhibin Yin		
#	Article	IF	CITATIONS	
37	Role of three-body recombination for charge reduction in MALDI process. Analyst, The, 2013, 138, 2964.	1.7	4	