
Akio Kishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3561032/publications.pdf Version: 2024-02-01

Δκιο Κιεμιολ

#	Article	IF	CITATIONS
1	Internal radial perfusion bioreactor promotes decellularization and recellularization of rat uterine tissue. Journal of Bioscience and Bioengineering, 2022, 133, 83-88.	1.1	8
2	Generation of a tendon-like tissue from human iPS cells. Journal of Tissue Engineering, 2022, 13, 204173142210740.	2.3	9
3	4-Arm PEG-Functionalized Decellularized Pericardium for Effective Prevention of Postoperative Adhesion in Cardiac Surgery. ACS Biomaterials Science and Engineering, 2022, 8, 261-272.	2.6	4
4	In Vitro Tissue Reconstruction Using Decellularized Pericardium Cultured with Cells for Ligament Regeneration. Polymers, 2022, 14, 2351.	2.0	2
5	Effect of luminal surface structure of decellularized aorta on thrombus formation and cell behavior. PLoS ONE, 2021, 16, e0246221.	1.1	8
6	Tumor growth suppression by implantation of an anti-CD25 antibody-immobilized material near the tumor via regulatory T cell capture. Science and Technology of Advanced Materials, 2021, 22, 607-615.	2.8	0
7	In vivo recellularization of xenogeneic vascular grafts decellularized with high hydrostatic pressure method in a porcine carotid arterial interpose model. PLoS ONE, 2021, 16, e0254160.	1.1	9
8	Elastic Modulus of ECM Hydrogels Derived from Decellularized Tissue Affects Capillary Network Formation in Endothelial Cells. International Journal of Molecular Sciences, 2020, 21, 6304.	1.8	19
9	<i>In vitro</i> evaluation of surface biological properties of decellularized aorta for cardiovascular use. Journal of Materials Chemistry B, 2020, 8, 10977-10989.	2.9	11
10	Recellularization of decellularized cancellous bone scaffolds using low-temperature cell seeding. Tissue and Cell, 2020, 66, 101385.	1.0	9
11	Characterization of Engineering Plastics Plasticized Using Supercritical CO2. Polymers, 2020, 12, 134.	2.0	9
12	Preparation of gradient-type biological tissue–polymer complex for interlinking device. Materials Science and Engineering C, 2020, 114, 111017.	3.8	0
13	Protein adsorption and cell adhesion behavior of engineering plastics plasticized by supercritical carbon dioxide. Dental Materials Journal, 2020, 39, 1033-1038.	0.8	1
14	Evaluation of Decellularized Arteries Derived from Biological Tissue. Japanese Journal of Cardiovascular Surgery, 2020, 49, 45-51.	0.0	0
15	Preparation of the Materials for Regenerative Medicine from Biological Tissues/Organs by Using High Hydrostatic Pressure Decellularization Method. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2020, 30, 36-46.	0.1	0
16	Extracellular Matrix Induces Periodontal Ligament Reconstruction In Vivo. International Journal of Molecular Sciences, 2019, 20, 3277.	1.8	20
17	Comparison of Highâ€Hydrostaticâ€Pressure Decellularized Versus Freezeâ€Thawed Porcine Menisci. Journal of Orthopaedic Research, 2019, 37, 2466-2475.	1.2	24
18	Re-epithelialization and remodeling of decellularized corneal matrix in a rabbit corneal epithelial wound model. Materials Science and Engineering C, 2019, 102, 238-246.	3.8	11

#	Article	IF	CITATIONS
19	Surface Topography of PDMS Replica Transferred from Various Decellularized Aortic Lumens Affects Cellular Orientation. ACS Biomaterials Science and Engineering, 2019, 5, 5721-5726.	2.6	7
20	Induction of <i>in Vivo</i> Ectopic Hematopoiesis by a Three-Dimensional Structured Extracellular Matrix Derived from Decellularized Cancellous Bone. ACS Biomaterials Science and Engineering, 2019, 5, 5669-5680.	2.6	15
21	A hybrid smallâ€diameter tube fabricated from decellularized aortic intimaâ€media and electrospun fiber for artificial smallâ€diameter blood vessel. Journal of Biomedical Materials Research - Part A, 2019, 107, 1064-1070.	2.1	20
22	Fabrication of uterine decellularized matrix using high hydrostatic pressure through depolymerization of actin filaments. Journal of Biomechanical Science and Engineering, 2019, 14, 19-00097-19-00097.	0.1	3
23	A fibrinâ€coated pericardial extracellular matrix prevented heart adhesion in a rat model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1088-1094.	1.6	7
24	New enzymatic-high hydrostatic pressure method to decellularized uterine tissue as scaffold for uterus regeneration in murine model. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2019, 2019.31, 2C14.	0.0	0
25	Fabrication and characterization of extracellular matrix hydrogel derived from uterine decellularized tissues. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2019, 2019.31, 2C24.	0.0	0
26	Vascular Anastomosis Support Device for Coronary Artery Bypass Grafting. The Proceedings of Ibaraki District Conference, 2019, 2019.27, 521.	0.0	0
27	Vessels Anastomosis Supporting Device for Coronary Artery Bypass Grafting. Journal of Life Support Engineering, 2019, 31, 151-157.	0.1	1
28	Water absorption by decellularized dermis. Heliyon, 2018, 4, e00600.	1.4	7
29	Selective Cell Capture and Release Using Antibody-Immobilized Polymer-Grafted Surface. Kobunshi Ronbunshu, 2018, 75, 155-163.	0.2	2
30	Medical Application of Decellularized Tissue-Polymer Complex. Kobunshi Ronbunshu, 2018, 75, 128-136.	0.2	0
31	Application of a perfusion bioreactor to promote decellularization and recellularization for rat uterine tissue. The Proceedings of Conference of Kanto Branch, 2018, 2018.24, OS1007.	0.0	0
32	Fabrication of visible marker on living body-derived materials for ultrasonography by sputtering technology. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2018, 2018.30, 1H18.	0.0	0
33	Induction of immunogenic cell death of cancer cell by using chemical detergent treatment and its activation of immune system. FASEB Journal, 2018, 32, 664.2.	0.2	0
34	Evaluation of smallâ€diameter vascular grafts reconstructed from decellularized aorta sheets. Journal of Biomedical Materials Research - Part A, 2017, 105, 1293-1298.	2.1	34
35	Capture and release of cells using a temperature-responsive surface that immobilizes an antibody through DNA duplex formation. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1172-1182.	1.9	6
36	Overview of the Development, Applications, and Future Perspectives of Decellularized Tissues and Organs. ACS Biomaterials Science and Engineering, 2017, 3, 1236-1244.	2.6	63

#	Article	IF	CITATIONS
37	Histological structure affects recellularization of decellularized arteries. Materials Science and Engineering C, 2017, 70, 450-455.	3.8	11
38	Fabrication of uterine decellularized matrices using high hydrostatic pressure. The Proceedings of Conference of Kanto Branch, 2017, 2017.23, 1509.	0.0	0
39	Development of Coronary Artery Bypass Grafting Device applying the Integrated Low-Level Energies Adhesion Technique. The Proceedings of Ibaraki District Conference, 2017, 2017.25, 514.	0.0	0
40	Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7840-7845.	3.3	93
41	Thermal denaturation behavior of collagen fibrils in wet and dry environment. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 538-545.	1.6	18
42	Ultrastructural analysis of the decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty in a rabbit model. Scientific Reports, 2016, 6, 27734.	1.6	41
43	Visualization of living tissue structural changes by heat and pressure. The Proceedings of Ibaraki District Conference, 2016, 2016.24, 517.	0.0	0
44	1H25 Uterus Tissue Engineering by the matrices decellularized with hyper hydrostatic pressure. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2016, 2016.28, _1H25-11H25-5	0.0	0
45	OS1412 Uterine Tissue Engineering with Decellularized Matrix including Microvasculature. The Proceedings of Conference of Kanto Branch, 2016, 2016.22, _OS1412-1OS1412-2	0.0	0
46	Porcine radial artery decellularization by high hydrostatic pressure. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E144-E151.	1.3	50
47	Preparation Fibrillized Collagenâ€Glycosaminoglycan Complex Matrix Using Fibrillogenesis. Macromolecular Symposia, 2015, 358, 95-105.	0.4	6
48	Decellularized porcine aortic intima-media as a potential cardiovascular biomaterial. Interactive Cardiovascular and Thoracic Surgery, 2015, 21, 189-194.	0.5	33
49	Effect of decellularized tissue powders on a rat model of acute myocardial infarction. Materials Science and Engineering C, 2015, 56, 494-500.	3.8	19
50	Corneal Regeneration by Deep Anterior Lamellar Keratoplasty (DALK) Using Decellularized Corneal Matrix. PLoS ONE, 2015, 10, e0131989.	1.1	35
51	2A46 Study on reconstruction method of rat uterus using decellularized matrix scaffold. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 341-342.	0.0	0
52	A Protein Extraction System with a Water/Oil Microemulsion formed by a Biodegradable Polymer Surfactant. Solvent Extraction Research and Development, 2014, 21, 47-54.	0.5	1
53	Application of Detergents or High Hydrostatic Pressure as Decellularization Processes in Uterine Tissues and Their Subsequent Effects on In Vivo Uterine Regeneration in Murine Models. PLoS ONE, 2014, 9, e103201.	1.1	112
54	Decellularized dermis–polymer complex provides a platform for soft-to-hard tissue interfaces. Materials Science and Engineering C, 2014, 35, 354-362.	3.8	12

#	Article	IF	CITATIONS
55	In Vivo Characterization of a Decellularized Dermisâ€Polymer Complex for Use in Percutaneous Devices. Artificial Organs, 2014, 38, 1060-1065.	1.0	11
56	Relation between the tissue structure and protein permeability of decellularized porcine aorta. Materials Science and Engineering C, 2014, 43, 465-471.	3.8	13
57	Relationships between molecular mobility, fibrillogenesis of collagen molecules, and the inflammatory response: An experimental study in vitro and in vivo. Journal of Colloid and Interface Science, 2014, 433, 16-25.	5.0	3
58	In-situ polymerization of PMMA inside decellularized dermis using UV photopolymerization. European Polymer Journal, 2014, 60, 163-171.	2.6	9
59	Adhesion between polymer surface modified by graft polymerization and tissue during surgery using an ultrasonically activated scalpel device. Journal of Applied Polymer Science, 2014, 131, .	1.3	6
60	504 Fundamental study of stent heating methods for tissue adhesion treatment. The Proceedings of Ibaraki District Conference, 2014, 2014.22, 7-8.	0.0	0
61	2D16 Reconstruction of rat uterine tissue using a decellularized tissue scaffold. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 397-398.	0.0	0
62	503 Coronary artery bypass graft connecting device with the integrated low-level energies adhesion method. The Proceedings of Ibaraki District Conference, 2014, 2014.22, 5-6.	0.0	0
63	Reconstruction of small diameter arteries using decellularized vascular scaffolds. Journal of Medical and Dental Sciences, 2014, 61, 33-40.	0.4	13
64	Improvement of antisense oligonucleotides delivery using high hydrostatic pressurized lipoplex. Materials Research Society Symposia Proceedings, 2013, 1498, 3-8.	0.1	0
65	Fundamental study on the development of a surgical device for polymer-tissue adhesion using vibration damping of polymeric materials. Journal of Applied Polymer Science, 2013, 130, 2532-2537.	1.3	1
66	A Basic Study of Osteogenesis between Decellularized Cortical Bone Pieces for Bone Graft Construction. Advanced Biomedical Engineering, 2013, 2, 95-100.	0.4	10
67	High Hydrostatic Pressurized Lipoplex Enhances Transfection Efficiency In Vitro. Advanced Biomedical Engineering, 2013, 2, 80-83.	0.4	Ο
68	516 The Prevention of Stent Migration Using Tissue Adhesion Method:Inductive Heating of The Stent with Small Coil and Evaluation of Tensile Strength. The Proceedings of Ibaraki District Conference, 2013, 2013.21, 175-176.	0.0	0
69	517 Integrated low energy adhesion technique for living tissue : The change of coUagens geometric structures with heating and pressing. The Proceedings of Ibaraki District Conference, 2013, 2013.21, 177-178.	0.0	Ο
70	Fabrication of a heterostructural fibrillated collagen matrix for the regeneration of soft tissue function. Soft Matter, 2012, 8, 472-480.	1.2	20
71	The Cytotoxic Activity of Diterpenoids from Isodon species. Natural Product Communications, 2012, 7, 1934578X1200700.	0.2	2
72	Amarastellineâ€A: A Fluorescent Alkaloid from <i>Quassia amara</i> and Its Properties in Living Cells. ChemPlusChem, 2012, 77, 427-431.	1.3	16

5

#	Article	IF	CITATIONS
73	The effect of decellularized bone/bone marrow produced by high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells. Biomaterials, 2011, 32, 7060-7067.	5.7	96
74	Effect of treatment temperature on collagen structures of the decellularized carotid artery using high hydrostatic pressure. Journal of Artificial Organs, 2011, 14, 223-231.	0.4	39
75	Release behavior from hydrogenâ€bonded polymer gels prepared by pressurization. Journal of Applied Polymer Science, 2011, 119, 2725-2729.	1.3	9
76	402 Biological tissue and metal adhesion technology with integrated low-level energies. The Proceedings of Ibaraki District Conference, 2011, 2011.19, 81-82.	0.0	0
77	510 Study on Tissue Adhesive System involving Induction Heating : Temperature Characteristics When the Frequency is Varied. The Proceedings of Ibaraki District Conference, 2011, 2011.19, 133-134.	0.0	0
78	Suppression of Cell Adhesion on Well-defined Concentrated Polymer Brushes of Hydrophilic Polymers. Chemistry Letters, 2010, 39, 142-143.	0.7	23
79	Human Mesenchymal Stem Cell Behavior on Concentrated Polymer Brushes Presenting Different Surface Stiffness. Chemistry Letters, 2010, 39, 1164-1165.	0.7	5
80	The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials, 2010, 31, 3590-3595.	5.7	224
81	Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials, 2010, 31, 3941-3948.	5.7	221
82	165 Development of Cell Culture Microdevice Actuated by Piezoelectric Thin Film for On-Chip Regulation of Cell Functions. The Proceedings of Conference of Tokai Branch, 2009, 2009.58, 59-60.	0.0	0
83	20303 Vibration characteristics analysis of nano vibration device for cell culture. The Proceedings of Conference of Kanto Branch, 2009, 2009.15, 189-190.	0.0	0
84	20312 Tissue adhesion technology with low level energy integration. The Proceedings of Conference of Kanto Branch, 2009, 2009.15, 207-208.	0.0	0
85	In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Molecular Vision, 2009, 15, 2022-8.	1.1	88
86	Pressureâ€induced molecular assembly of hydrogenâ€bonded polymers. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 743-750.	2.4	13
87	Controlling Coupling Reaction of EDC and NHS for Preparation of Collagen Gels Using Ethanol/Water Coâ€Solvents. Macromolecular Bioscience, 2008, 8, 32-37.	2.1	116
88	311 Development of catheter type stent adhesion manipulator. The Proceedings of Ibaraki District Conference, 2008, 2008, 79-80.	0.0	0
89	257 Development of Biodevice Actuated by Piezoelectric Thin Film for On-chip Regulation of Cell Functions. The Proceedings of Conference of Tokai Branch, 2008, 2008.57, 141-142.	0.0	0
90	C13 Development of Spatial Cell Patterning Microdevice for Functional Analysis of Cellular Network : Feasibility Study on Cell Patterning. The Proceedings of the Manufacturing & Machine Tool Conference, 2008, 2008.7, 119-120.	0.0	0

#	Article	IF	CITATIONS
91	Evaluation of stent-graft adhesion with the low damage adhesion technology. Journal of Life Support Engineering, 2008, 20, 93-93.	0.1	0
92	Effect of heat characteristics of the low damage adhesion technology on tissue adhesion. Journal of Life Support Engineering, 2008, 20, 38-38.	0.1	0
93	Size-Exclusion Effect and Protein Repellency of Concentrated Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization. Macromolecular Symposia, 2007, 248, 189-198.	0.4	28
94	Tissue adhesion technology with integrated low level energies. Journal of Life Support Engineering, 2007, 19, 185-185.	0.1	0
95	215 Reconstruction of small diameter arteries using acellular vessel scaffold. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2007, 2006.19, 40-41.	0.0	0
96	Protein Repellency of Well-Defined, Concentrated Poly(2-hydroxyethyl methacrylate) Brushes by the Size-Exclusion Effect. Macromolecules, 2006, 39, 2284-2290.	2.2	201
97	Journal of Artificial Organs 2005: the year in review. Journal of Artificial Organs, 2006, 9, 1-7.	0.4	11
98	218 Application of Supercritical Fluid techniques to The Processing for Regenerative Tissue Scaffold. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2006, 2005.18, 95-96.	0.0	0
99	Tissue adhesion technology by using vibration energy. Journal of Life Support Engineering, 2006, 18, 78-78.	0.1	0
100	704 Supercritical fluid extraction for decellularization of biological tissue. The Proceedings of the JSME Annual Meeting, 2006, 2006.5, 211-212.	0.0	0
101	Study on influence of mechanical nano-vibration stimuli on cell differentiation. Journal of Life Support Engineering, 2006, 18, 80-80.	0.1	0
102	Effect of nano-meter vibration on cells. Journal of Life Support Engineering, 2006, 18, 85-85.	0.1	0
103	Novel functional biodegradable polymer. III. The construction of poly(γ-glutamic acid)-sulfonate hydrogel with fibroblast growth factor-2 activity. Journal of Biomedical Materials Research - Part A, 2005, 73A, 485-491.	2.1	32
104	Preparation and Recellularization of Tissue Engineered Bioscaffold for Heart Valve Replacement. , 2005, , 83-94.		14
105	Novel Functional Biodegradable Polymer II: Fibroblast Growth Factor-2 Activities of Poly(γ-glutamic) Tj ETQq1 1	0.784314 2.6	1 rggT /Over
106	Fabrication of High-Density Polymer Brush on Polymer Substrate by Surface-Initiated Living Radical Polymerization. Macromolecules, 2005, 38, 4604-4610.	2.2	110
107	Nano-vibration and Cells. Journal of Life Support Engineering, 2005, 17, 80-80.	0.1	0
108	Engineering evaluation of the quick touch operation and development of ultrasonically activated scalpel control method. Journal of Life Support Engineering, 2005, 17, 42-42.	0.1	0

Ακιο Kishida

#	Article	IF	CITATIONS
109	220 Tissue Regeneration using Acellular Bioscaffold. Proceedings of the JSME Bioengineering Conference and Seminar, 2005, 2004.17, 77-78.	0.0	0
110	Alternating gene expression in fibroblasts adhering to multilayers of chitosan and dextran sulfate. Journal of Biomedical Materials Research Part B, 2003, 67A, 1060-1063.	3.0	15
111	Human Calcitonin Delivered Orally by Means of Nanoparticles Composed of Novel Graft Copolymers. Journal of Dispersion Science and Technology, 2003, 24, 623-632.	1.3	4
112	Novel Functional Biodegradable Polymer: Synthesis and Anticoagulant Activity of Poly(γ-Glutamic) Tj ETQq0 0 (D rgBT /Ov	erlock 10 Tf 5

113	HSP 47 and collagen mRNA expression in L929 cells adhered to lipid films. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 149-156.	1.9	5
114	Hydrogels for Biomedical and Pharmaceutical Applications. , 2001, , .		12
115	Synthesis and characterization of novel biodegradable polymers composed of hydroxycinnamic acid andD,L-lactic acid. Journal of Applied Polymer Science, 2001, 82, 2357-2364.	1.3	62
116	Synthesis and characterization of novel biodegradable polymers composed of hydroxycinnamic acid and D,Lâ€lactic acid. Journal of Applied Polymer Science, 2001, 82, 2357-2364.	1.3	2
117	Synthesis of novel smart polymers for bioseparation and bioprocessing. , 2001, , .		0
118	In Vitro Calcification Model—Part 1: Apatite Formation on Segmented Polyurethane Containing Silicone Using an Alternate Soaking Process. Journal of Bioactive and Compatible Polymers, 2000, 15, 72-84.	0.8	0
119	Study on complex formation between recombinant human thrombomodulin fragment and thrombin using surface plasmon resonance. , 2000, 63, 136-140.		4
120	Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. , 2000, 50, 344-352.		100
120 121		2.5	100 25
	process. , 2000, 50, 344-352. Nanosphere formation in copolymerization of methyl methacrylate with poly(ethylene glycol)	2.5 1.3	
121	process. , 2000, 50, 344-352. Nanosphere formation in copolymerization of methyl methacrylate with poly(ethylene glycol) macromonomers. Journal of Polymer Science Part A, 2000, 38, 1811-1817. Novel functional polymers: Poly(dimethylsiloxane)-polyamide multiblock copolymer. IX. Surface properties of blend film of aramid-silicone resins with aramid. Journal of Applied Polymer Science,		25
121 122	process., 2000, 50, 344-352. Nanosphere formation in copolymerization of methyl methacrylate with poly(ethylene glycol) macromonomers. Journal of Polymer Science Part A, 2000, 38, 1811-1817. Novel functional polymers: Poly(dimethylsiloxane)-polyamide multiblock copolymer. IX. Surface properties of blend film of aramid-silicone resins with aramid. Journal of Applied Polymer Science, 2000, 78, 2198-2205. Study of cellular responses to polymeric biomaterials using the differential display method. Journal	1.3	25 10
121 122 123	 process., 2000, 50, 344-352. Nanosphere formation in copolymerization of methyl methacrylate with poly(ethylene glycol) macromonomers. Journal of Polymer Science Part A, 2000, 38, 1811-1817. Novel functional polymers: Poly(dimethylsiloxane)-polyamide multiblock copolymer. IX. Surface properties of blend film of aramid-silicone resins with aramid. Journal of Applied Polymer Science, 2000, 78, 2198-2205. Study of cellular responses to polymeric biomaterials using the differential display method. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 333-340. 	1.3 1.9	25 10 6

Akio Kishida

#	Article	IF	CITATIONS
127	A study on hydroxyapatite formation on/in the hydroxyl groups-bearing nonionic hydrogels. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 19-32.	1.9	38
128	Surface characterization of poly(styrene-co- fluoroalkylfumarate): XPS and contact angle measurement study. Journal of Applied Polymer Science, 1999, 71, 1049-1054.	1.3	8
129	Surface grafting of poly(vinylamine) onto poly(ethylene) film by corona discharge-induced grafting. Journal of Applied Polymer Science, 1999, 72, 1583-1587.	1.3	19
130	Synthesis and functionality of poly(N-vinylalkylamide). X. A novel aqueous two-phase system based on thermosensitive polymers and dextran. Journal of Applied Polymer Science, 1999, 73, 2545-2548.	1.3	14
131	Novel surface modification of cellulose film by heat-set finishing method using poly(ethylene) Tj ETQq1 1 0.7843	14 rgBT /(1.9	Overlock 10 T
132	Surface modification of poly(ethylene terephthalate) film by coating with poly(ethylene) Tj ETQq0 0 0 rgBT /Over	lock 10 T 1.3	f 50 542 Td (
133	Surface modification of synthetic fiber nonwoven fabrics with poly(acrylic acid) chains prepared by corona discharge induced grafting. Angewandte Makromolekulare Chemie, 1999, 266, 56-62.	0.3	27
134	Improved alternate deposition of biodegradable naturally occurring polymers onto a quartz crystal microbalance. Journal of Polymer Science Part A, 1999, 37, 801-804.	2.5	26
135	Graft copolymers having hydrophobic backbone and hydrophilic branches. XXIII. Particle size control of poly(ethylene glycol)-coated polystyrene nanoparticles prepared by macromonomer method. Journal of Polymer Science Part A, 1999, 37, 2155-2166.	2.5	52
136	Apatite formation on/in hydrogel matrices using an alternate soaking process: II. Effect of swelling ratios of poly(vinyl alcohol) hydrogel matrices on apatite formation. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 331-339.	1.9	99
137	Apatite formation on/in hydrogel matrices using an alternate soaking process (III) : Effect of physico-chemical factors on apatite formation on/in poly(vinyl alcohol) hydrogel matrices. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 795-804.	1.9	66
138	APATITE COATING ON POLY(ACRYLIC ACID) GRAFTED POLY(ETHYLENE) FILMS BY USING AN ALTERNATE SOAKING PROCESS. , 1999, , .		4
139	Base-specific separation of oligodeoxynucleotides by capillary affinity gel electrophoresis. Electrophoresis, 1998, 19, 433-436.	1.3	19
140	Synthesis and functionalities of poly(N-vinylalkylamide). VII. A novel aqueous two-phase systems based on poly(N-vinylacetamide) and dextran. Journal of Applied Polymer Science, 1998, 67, 255-258.	1.3	9
141	Thermosensitive surface properties of polyethylene film with poly(N-isopropylacrylamide) chains prepared by corona discharge induced grafting. Journal of Applied Polymer Science, 1998, 68, 1773-1779.	1.3	14
142	Preparation of a novel functional hydrogel consisting of sulfated glucoside-bearing polymer: Activation of basic fibroblast growth factor. , 1998, 41, 386-391.		32
143	Hydroxyapatite Formation on/in Poly(vinyl alcohol) Hydrogel Matrices Using a Novel Alternate Soaking Process. Chemistry Letters, 1998, 27, 711-712.	0.7	246
144	The Control of Phase-structure of Block Copolymers from the Standpoint of the Use as Biomedical Materials. Journal of Fiber Science and Technology, 1998, 54, P428-P432.	0.0	0

#	Article	IF	CITATIONS
145	The mechanism of anticoagulant activity of a novel heparinoid sulfated glucoside-bearing polymer. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 545-553.	1.9	9
146	Evaluation of biological responses to polymeric biomaterials by RT-PCR analysis II: Study of HSP 70 mRNA expression. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 809-814.	1.9	17
147	Preparation and anticoagulant surface properties of glucoside―or sulfated glucosideâ€bearing polymer grafted poly(ethylene) films. Macromolecular Symposia, 1997, 120, 159-167.	0.4	6
148	Novel Functional Polymers: Poly(dimethylsiloxane)-Polyamide Multiblock Copolymer VI. A Transmission Electron Microscopic Study on Microphase-Separated Structure in Aramid-Silicone Resin. Polymer Journal, 1997, 29, 201-203.	1.3	10
149	Novel Functional Polymers:Â Poly(dimethylsiloxane)â^Polyamide Multiblock Copolymer. 8.1Surface Studies of Aramidâ^Silicone Resin by Means of XPS, Static SIMS, and TEM. Macromolecules, 1997, 30, 4421-4428.	2.2	38
150	Oral peptide delivery using nanoparticles composed of novel graft copolymers having hydrophobic backbone and hydrophilic branches. International Journal of Pharmaceutics, 1997, 149, 93-106.	2.6	92
151	Absorption enhancement of orally administered salmon calcitonin by polystyrene nanoparticles having poly(N-isopropylacrylamide) branches on their surfaces. International Journal of Pharmaceutics, 1997, 158, 69-78.	2.6	48
152	Stabilization of salmon calcitonin by polystyrene nanoparticles having surface hydrophilic polymeric chains, against enzymatic degradation. International Journal of Pharmaceutics, 1997, 159, 181-189.	2.6	40
153	Synthesis and functionalities of poly (N-vinylalkylamide). IV. Synthesis and free radical polymerization ofN-vinylisobutyramide and thermosensitive properties of the polymer. Journal of Polymer Science Part A, 1997, 35, 1763-1768.	2.5	75
154	Synthesis and functionalities of poly(N-vinylalkylamide). V. Control of a lower critical solution temperature of poly(N-vinylalkylamide). Journal of Polymer Science Part A, 1997, 35, 3087-3094.	2.5	87
155	Synthesis and functionalities of poly(N-vinylalkylamide). VI. A novel thermosensitive hydrogel crosslinked poly(N-vinylisobutyramide). Journal of Polymer Science Part A, 1997, 35, 3377-3384.	2.5	26
156	Novel functional polymers: Poly(dimethylsiloxane)-polyamide multiblock copolymer. VII. Oxygen permeability of aramid-silicone membranes in a gas-membrane-liquid system. Journal of Applied Polymer Science, 1997, 64, 1153-1159.	1.3	10
157	Synthesis and functionalities of poly(N-vinylalkylamide). IV. Synthesis and free radical polymerization of N-vinylisobutyramide and thermosensitive properties of the polymer. , 1997, 35, 1763.		1
158	Synthesis and functionalities of poly (Nâ€vinylalkylamide). IV. Synthesis and free radical polymerization of Nâ€vinylisobutyramide and thermosensitive properties of the polymer. Journal of Polymer Science Part A, 1997, 35, 1763-1768.	2.5	1
159	Synthesis and functionalities of poly(Nâ€vinylalkylamide). V. Control of a lower critical solution temperature of poly(Nâ€vinylalkylamide). Journal of Polymer Science Part A, 1997, 35, 3087-3094.	2.5	1
160	Synthesis and Anticoagulant Activity of Sulfated Glucoside-Bearing Polymer. Bioconjugate Chemistry, 1996, 7, 393-395.	1.8	50
161	Synthesis of poly(N-vinylisobutyramide) from poly(N-vinylacetamide) and its thermosensitive property. Journal of Polymer Science Part A, 1996, 34, 301-303.	2.5	67
162	Graft copolymers having hydrophobic backbone and hydrophilic branches. XI. Preparation and thermosensitive properties of polystyrene microspheres having poly (N-isopropylacrylamide) branches on their surfaces. Journal of Polymer Science Part A, 1996, 34, 2213-2220.	2.5	85

#	Article	IF	CITATIONS
163	Novel functional polymers: Poly(dimethylsiloxane)-polyamide multiblock copolymer. III. Synthesis and surface properties of disiloxane-aromatic polyamide multiblock copolymer. Journal of Applied Polymer Science, 1996, 59, 1059-1065.	1.3	27
164	Novel functional polymers: Poly(dimethylsiloxane)-polyamide multiblock copolymer. IV. Gas permeability and thermomechanical properties of aramid-silicone resins. Journal of Applied Polymer Science, 1996, 59, 1067-1071.	1.3	21
165	Novel functional polymers: Poly(dimethylsiloxane)-polyamide multiblock copolymer V*. The interaction between biomolecules and the surface of aramid-silicone resins. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 871-880.	1.9	16
166	Novel functional polymers: Poly(dimethylsiloxane)–polyamide multiblock copolymer. IV. Gas permeability and thermomechanical properties of aramid–silicone resins. , 1996, 59, 1067.		1
167	Synthesis of poly(Nâ€vinylisobutyramide) from poly(Nâ€vinylacetamide) and its thermosensitive property. Journal of Polymer Science Part A, 1996, 34, 301-303.	2.5	1
168	Graft copolymers having hydrophobic backbone and hydrophilic branches. X. Preparation and properties of water-dispersible polyanionic microspheres having poly(methacrylic acid) branches on their surfaces. Journal of Polymer Science Part A, 1995, 33, 1219-1225.	2.5	48
169	A novel biomaterial: Poly(dimethylsiloxane)-polyamide multiblock copoly mer I. Synthesis and evaluation of blood compatibility. Journal of Biomaterials Science, Polymer Edition, 1994, 5, 89-98.	1.9	24
170	Title is missing!. Angewandte Makromolekulare Chemie, 1994, 220, 89-97.	0.3	14
171	Evaluation of the Selective Binding Ability of Oligodeoxynucleotides to Poly(9-vinyladenine) Using Capillary Affinity Gel Electrophoresis Analytical Sciences, 1994, 10, 967-969.	0.8	12
172	Immobilization of Human Thrombomodulin onto Biomaterials. ASAIO Journal, 1994, 40, M840-M845.	0.9	24
173	Title is missing!. Angewandte Makromolekulare Chemie, 1993, 206, 69-75.	0.3	27
174	Interactions of poly(ethylene glycol)-grafted cellulose membranes with proteins and platelets. Biomaterials, 1992, 13, 113-118.	5.7	65
175	Cell behaviour on polymer surfaces grafted with non-ionic and ionic monomers. Biomaterials, 1991, 12, 786-792.	5.7	118
176	Oxidation of polyethylene surface by corona discharge and the subsequent graft polymerization. Journal of Polymer Science Part A, 1988, 26, 3309-3322.	2.5	123
177	Graft copolymerization of acrylamide onto a polyethylene surface pretreated with glow discharge. Macromolecules, 1986, 19, 1804-1808.	2.2	497
178	Tissue Engineering with Natural Tissue Matrices. Advances in Science and Technology, 0, , .	0.2	1
179	Synthesis of novel smart polymers for bioseparation and bioprocessing. , 0, , 27-54.		О