Sophie Cornu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3560651/publications.pdf Version: 2024-02-01

SODHIE CODNUL

#	Article	IF	CITATIONS
1	Atmosphere–soil carbon transfer as a function of soil depth. Nature, 2018, 559, 599-602.	13.7	273
2	Evidence of titanium mobility in soil profiles, Manaus, central Amazonia. Geoderma, 1999, 91, 281-295.	2.3	162
3	Lessivage as a major process of soil formation: A revisitation of existing data. Geoderma, 2011, 167-168, 135-147.	2.3	75
4	Location of natural trace elements in silty soils using particle-size fractionation. Geoderma, 2006, 133, 295-308.	2.3	72
5	Rare earth elements as tracers of pedogenetic processes. Comptes Rendus - Geoscience, 2008, 340, 523-532.	0.4	70
6	Trace element accumulation in Mn—Fe—oxide nodules of a planosolic horizon. Geoderma, 2005, 125, 11-24.	2.3	62
7	The impact of redox conditions on the rare earth element signature of redoximorphic features in a soil sequence developed from limestone. Geoderma, 2012, 170, 25-38.	2.3	58
8	Effect of Agricultural Practices on Traceâ€Element Distribution in Soil. Communications in Soil Science and Plant Analysis, 2007, 38, 473-491.	0.6	52
9	Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chemical Geology, 2016, 446, 163-174.	1.4	52
10	Identifying the Functional Macropore Network Related to Preferential Flow in Structured Soils. Vadose Zone Journal, 2015, 14, vzj2015.05.0070.	1.3	49
11	The environmental impact of heavy metals from sewage sludge in ferralsols (São Paulo, Brazil). Science of the Total Environment, 2001, 271, 27-48.	3.9	45
12	Paleotemperature of the last interglacial period based on δ180 of Strombus bubonius from the western Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 103, 1-20.	1.0	38
13	Evidence of short-term clay evolution in soils under human impact. Comptes Rendus - Geoscience, 2012, 344, 747-757.	0.4	33
14	Vertical distributions of 137Cs in soils: a meta-analysis. Journal of Soils and Sediments, 2015, 15, 81-95.	1.5	29
15	Dating constituent formation in soils to determine rates of soil processes: A review. Geoderma, 2009, 153, 293-303.	2.3	28
16	Evaluating SoilGen2 as a tool for projecting soil evolution induced by global change. Science of the Total Environment, 2016, 571, 110-123.	3.9	21
17	3D representation of soil distribution: An approach for understanding pedogenesis. Comptes Rendus - Geoscience, 2009, 341, 486-494.	0.4	16
18	Agricultural drainage-induced Albeluvisol evolution: A source of deterministic chaos. Geoderma, 2013, 193-194, 109-116.	2.3	16

SOPHIE CORNU

#	Article	IF	CITATIONS
19	Quantification of vertical solid matter transfers in soils during pedogenesis by a multi-tracer approach. Journal of Soils and Sediments, 2017, 17, 408-422.	1.5	16
20	Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils. Science of the Total Environment, 2019, 652, 523-537.	3.9	16
21	Controls of the spatial variability of Cr concentration in topsoils of a central French landscape. Geoderma, 2006, 132, 143-157.	2.3	13
22	Quantification of soil volumes in the Eg & Bt-horizon of an Albeluvisol using image analysis. Canadian Journal of Soil Science, 2007, 87, 51-59.	0.5	13
23	Including Stable Carbon Isotopes to Evaluate the Dynamics of Soil Carbon in the Land‣urface Model ORCHIDEE. Journal of Advances in Modeling Earth Systems, 2019, 11, 3650-3669.	1.3	13
24	Aggregation and Dispersion Behavior in the 0- to 2- Âμm Fraction of Luvisols. Soil Science Society of America Journal, 2015, 79, 43-54.	1.2	12
25	Changes in the pathway and the intensity of albic material genesis: Role of agricultural practices. Geoderma, 2016, 268, 156-164.	2.3	12
26	Response of copper concentrations and stable isotope ratios to artificial drainage in a French Retisol. Geoderma, 2017, 300, 44-54.	2.3	12
27	Comparaison d'extractions séquentielles et cinétiques pour la spéciation de As dans des sols sableux contaminés. Comptes Rendus - Geoscience, 2004, 336, 1007-1015.	0.4	11
28	Can SOC modelling be improved by accounting for pedogenesis?. Geoderma, 2019, 338, 513-524.	2.3	10
29	Retention of 10Be, 137Cs and 210Pbxs in soils: Impact of physico-chemical characteristics. Geoderma, 2020, 367, 114242.	2.3	8
30	Distribution d'un élément trace (Cr) dans un sol développé sur roches métamorphiques : variabilité l'échelle d'un versant. Comptes Rendus - Geoscience, 2002, 334, 51-58.	Ã _{0.4}	7
31	Image-analytically derived conceptual model of Albeluvisol morphological degradation induced by artificial drainage in France. Geoderma, 2012, 189-190, 296-303.	2.3	6
32	The use of radiocarbon ¹⁴ C to constrain carbon dynamics in the soil module of the land surface model ORCHIDEE (SVN r5165). Geoscientific Model Development, 2018, 11, 4711-4726.	1.3	6
33	Allophanes, a significant soil pool of silicon for plants. Geoderma, 2022, 412, 115722.	2.3	6
34	Consequences of aggregation for the trace element distribution in the subsoil of a Planosol naturally rich in trace metal. Geoderma, 2006, 136, 160-173.	2.3	5
35	To which extent do rain interruption periods affect colloid retention in macroporous soils?. Geoderma, 2016, 275, 40-47.	2.3	5
36	Pedological characteristics of artificialized soils: A snapshot. Geoderma, 2021, 401, 115321.	2.3	5

SOPHIE CORNU

#	Article	IF	CITATIONS
37	Impact of carbo-gaseous saline waters registered by soils. Catena, 2001, 45, 209-228.	2.2	4
38	DISTRIBUTION OF MAJOR AND TRACE ELEMENTS AT THE AGGREGATE SCALE IN A SOIL NATURALLY RICH IN TRACE ELEMENTS. Soil Science, 2005, 170, 516-529.	0.9	4
39	A snapshot of soil water composition as an indicator of contrasted redox environments in a hedged farmland plot. Science of the Total Environment, 2009, 407, 5719-5725.	3.9	3
40	Influence de composés organiques sur l'adsorption de l'arsenic par les kaolinites. Comptes Rendus De L'Acad̩mie Des Sciences Earth & Planetary Sciences S̩rie II, Sciences De La Terre Et Des Plan̕tes =, 1999, 328, 649-654.	0.2	2
41	Xâ€ray Diffraction Determination of Minerals Carrying Trace Elements in Soil: Application to the French Soil Quality Monitoring Network. Communications in Soil Science and Plant Analysis, 2009, 40, 1138-1147.	0.6	1
42	Combining wavelets with statistical inference to map the mineralogical composition of pedological features from synchrotron X-ray diffraction data. SN Applied Sciences, 2020, 2, 1.	1.5	1
43	Quantity and Quality of Dispersed Fine Particles after the Lowâ€Energy Waterâ€Dispersible Soil Test: Impact of the Initial Soil Matrix Potential. Soil Science Society of America Journal, 2018, 82, 657-662. 	1.2	0
44	Editorial: Soil Evolution and Sustainability. Frontiers in Environmental Science, 2020, 8, .	1.5	0