Nan Sang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3560512/publications.pdf

Version: 2024-02-01

102	3,636	35	54
papers	citations	h-index	g-index
102	102	102	4146
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	SO2 Inhalation Contributes to the Development and Progression of Ischemic Stroke in the Brain. Toxicological Sciences, 2010, 114, 226-236.	1.4	266
2	Postsynaptically Synthesized Prostaglandin E2 (PGE2) Modulates Hippocampal Synaptic Transmission via a Presynaptic PGE2 EP2 Receptor. Journal of Neuroscience, 2005, 25, 9858-9870.	1.7	166
3	Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: A study based on myocardial toxicity. Environmental Pollution, 2016, 216, 380-390.	3.7	116
4	Parabens as chemicals of emerging concern in the environment and humans: A review. Science of the Total Environment, 2021, 778, 146150.	3.9	116
5	NF-κB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM2.5 aspiration. Particle and Fibre Toxicology, 2017, 14, 34.	2.8	99
6	SO2-Induced Neurotoxicity Is Mediated by Cyclooxygenases-2-Derived Prostaglandin E2 and its Downstream Signaling Pathway in Rat Hippocampal Neurons. Toxicological Sciences, 2011, 124, 400-413.	1.4	90
7	Winter Polycyclic Aromatic Hydrocarbon-Bound Particulate Matter from Peri-urban North China Promotes Lung Cancer Cell Metastasis. Environmental Science & Echnology, 2015, 49, 14484-14493.	4.6	89
8	Genotoxicity of municipal landfill leachate on root tips of Vicia faba. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2004, 560, 159-165.	0.9	87
9	Lipid Signaling and Synaptic Plasticity. Neuroscientist, 2006, 12, 425-434.	2.6	84
10	PGE2glycerol ester, a COX-2 oxidative metabolite of 2-arachidonoyl glycerol, modulates inhibitory synaptic transmission in mouse hippocampal neurons. Journal of Physiology, 2006, 572, 735-745.	1.3	83
11	Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury. Ecotoxicology and Environmental Safety, 2009, 72, 236-241.	2.9	81
12	COX-2 oxidative metabolite of endocannabinoid 2-AG enhances excitatory glutamatergic synaptic transmission and induces neurotoxicity. Journal of Neurochemistry, 2007, 102, 1966-1977.	2.1	79
13	Ambient fine particulate matter exposure induces reversible cardiac dysfunction and fibrosis in juvenile and older female mice. Particle and Fibre Toxicology, 2018, 15, 27.	2.8	70
14	Acute nitrogen dioxide (NO2) exposure enhances airway inflammation via modulating Th1/Th2 differentiation and activating JAK-STAT pathway. Chemosphere, 2015, 120, 722-728.	4.2	68
15	PM2.5, SO2 and NO2 co-exposure impairs neurobehavior and induces mitochondrial injuries in the mouse brain. Chemosphere, 2016, 163, 27-34.	4.2	67
16	Particulate matter (PM10) exposure induces endothelial dysfunction and inflammation in rat brain. Journal of Hazardous Materials, 2012, 213-214, 28-37.	6.5	58
17	Municipal landfill leachate induces cytogenetic damage in root tips of Hordeum vulgare. Ecotoxicology and Environmental Safety, 2006, 63, 469-473.	2.9	56
18	NO2 inhalation promotes Alzheimer's disease-like progression: cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication. Scientific Reports, 2016, 6, 22429.	1.6	56

#	Article	IF	CITATIONS
19	Acute nitrogen dioxide inhalation induces mitochondrial dysfunction in rat brain. Environmental Research, 2015, 138, 416-424.	3.7	54
20	Exposure to PFDoA causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. Environmental Pollution, 2018, 235, 974-982.	3.7	46
21	Landfill leachate affects metabolic responses of Zea mays L. seedlings. Waste Management, 2010, 30, 856-862.	3.7	44
22	Synergistic effects of particulate matter (PM10) and SO2 on human non-small cell lung cancer A549 via ROS-mediated NF-IºB activation. Journal of Environmental Sciences, 2015, 31, 146-153.	3.2	44
23	Chronic SO2 inhalation above environmental standard impairs neuronal behavior and represses glutamate receptor gene expression and memory-related kinase activation via neuroinflammation in rats. Environmental Research, 2015, 137, 85-93.	3.7	44
24	PM2.5-bound metal metabolic distribution and coupled lipid abnormality at different developmental windows. Environmental Pollution, 2017, 228, 354-362.	3.7	43
25	Effect of landfill leachate on cell cycle, micronucleus, and sister chromatid exchange in Triticum aestivum. Journal of Hazardous Materials, 2008, 155, 10-16.	6.5	42
26	SO2 inhalation induces protein oxidation, DNA–protein crosslinks and apoptosis in rat hippocampus. Ecotoxicology and Environmental Safety, 2009, 72, 879-884.	2.9	42
27	PM2.5 exposure stimulates COX-2-mediated excitatory synaptic transmission via ROS-NF-κB pathway. Chemosphere, 2018, 190, 124-134.	4.2	42
28	Inflammatory response and endothelial dysfunction in the hearts of mice co-exposed to SO ₂ , NO ₂ , and PM _{2.5} . Environmental Toxicology, 2016, 31, 1996-2005.	2.1	41
29	Sulfur Dioxide Contributes to the Cardiac and Mitochondrial Dysfunction in Rats. Toxicological Sciences, 2016, 151, 334-346.	1.4	41
30	Particulate matter (PM2.5) exposure season-dependently induces neuronal apoptosis and synaptic injuries. Journal of Environmental Sciences, 2017, 54, 336-345.	3.2	41
31	Oxidative stress, endothelial dysfunction and inflammatory response in rat heart to NO2 inhalation exposure. Chemosphere, 2011, 82, 1589-1596.	4.2	40
32	Micronuclei induced by municipal landfill leachate in mouse bone marrow cells in vivo. Environmental Research, 2004, 95, 77-81.	3.7	39
33	Ambient PM2.5 causes lung injuries and coupled energy metabolic disorder. Ecotoxicology and Environmental Safety, 2019, 170, 620-626.	2.9	39
34	Environmental nitrogen dioxide (NO2) exposure influences development and progression of ischemic stroke. Toxicology Letters, 2012, 214, 120-130.	0.4	37
35	Tebuconazole induces liver injury coupled with ROS-mediated hepatic metabolism disorder. Ecotoxicology and Environmental Safety, 2021, 220, 112309.	2.9	37
36	SO2 inhalation modulates the expression of pro-inflammatory and pro-apoptotic genes in rat heart and lung. Journal of Hazardous Materials, 2011, 185, 482-488.	6.5	36

#	Article	IF	CITATIONS
37	Gestational exposure to PM2.5 impairs vascularization of the placenta. Science of the Total Environment, 2019, 665, 153-161.	3.9	36
38	Synergistic effects of particulate matter (PM _{2.5}) and sulfur dioxide (SO ₂) on neurodegeneration via the microRNA-mediated regulation of tau phosphorylation. Toxicology Research, 2017, 6, 7-16.	0.9	35
39	Seasonal Variation in Air Particulate Matter (PM ₁₀) Exposure-Induced Ischemia-Like Injuries in the Rat Brain. Chemical Research in Toxicology, 2015, 28, 431-439.	1.7	34
40	Characterization of Synergistic Embryotoxicity of Nickel and Buprofezin in Zebrafish. Environmental Science & Environmental Sc	4.6	34
41	In vivo screening to determine neurological hazards of nitrogen dioxide (NO2) using Wistar rats. Journal of Hazardous Materials, 2012, 225-226, 46-53.	6.5	33
42	Potential hepatic toxicity of buprofezin at sublethal concentrations: ROS-mediated conversion of energy metabolism. Journal of Hazardous Materials, 2016, 320, 176-186.	6.5	32
43	Polycyclic aromatic hydrocarbon (PAH)-containing soils from coal gangue stacking areas contribute to epithelial to mesenchymal transition (EMT) modulation on cancer cell metastasis. Science of the Total Environment, 2017, 580, 632-640.	3.9	32
44	MICRONUCLEI INDUCED BY SULFUR DIOXIDE INHALATION IN MOUSE BONE-MARROW CELLS IN VIVO. Inhalation Toxicology, 2002, 14, 303-309.	0.8	30
45	Effects of nitrogen dioxide and its acid mist on reactive oxygen species production and antioxidant enzyme activity in Arabidopsis plants. Journal of Environmental Sciences, 2015, 34, 93-99.	3.2	29
46	A comparison of the toxicity of landfill leachate exposure at the seed soaking and germination stages on Zea mays L. (maize). Journal of Environmental Sciences, 2017, 55, 206-213.	3.2	29
47	Ambient fine particulate matter exposure induces cardiac functional injury and metabolite alterations in middle-aged female mice. Environmental Pollution, 2019, 248, 121-132.	3.7	28
48	Investigating the bio-toxicity of coking wastewater using Zea mays L. assay. Ecotoxicology and Environmental Safety, 2011, 74, 1050-1056.	2.9	27
49	SO ₂ inhalation modulates the expression of apoptosis-related genes in rat hippocampus via its derivatives <i>in vivo</i> . Inhalation Toxicology, 2010, 22, 919-929.	0.8	26
50	Sulfur dioxide inhalation stimulated mitochondrial biogenesis in rat brains. Toxicology, 2012, 300, 67-74.	2.0	26
51	Abnormal energy metabolism and tau phosphorylation in the brains of middle-aged mice in response to atmospheric PM2.5 exposure. Journal of Environmental Sciences, 2017, 62, 145-153.	3.2	26
52	SO2 inhalation causes synaptic injury in rat hippocampus via its derivatives in vivo. Chemosphere, 2013, 93, 2426-2432.	4.2	25
53	Maternal Exposure of BALB/c Mice to Indoor NO2 and Allergic Asthma Syndrome in Offspring at Adulthood with Evaluation of DNA Methylation Associated Th2 Polarization. Environmental Health Perspectives, 2017, 125, 097011.	2.8	25
54	Graphene Quantum Dots Disrupt Embryonic Stem Cell Differentiation by Interfering with the Methylation Level of <i>Sox</i> 2. Environmental Science & En	4.6	25

#	Article	IF	CITATIONS
55	Sulfur dioxide inhibits expression of mitochondrial oxidative phosphorylation genes encoded by both nuclear DNA and mitochondrial DNA in rat lungs. Environmental Science and Pollution Research, 2017, 24, 2527-2534.	2.7	22
56	Maternal Exposure to PM _{2.5} Affects Fetal Lung Development at Sensitive Windows. Environmental Science & Environment	4.6	22
57	Heavy metals in soil from gangue stacking areas increases children health risk and causes developmental neurotoxicity in zebrafish larvae. Science of the Total Environment, 2021, 794, 148629.	3.9	22
58	Sulfate Aerosols Promote Lung Cancer Metastasis by Epigenetically Regulating the Epithelial-to-Mesenchymal Transition (EMT). Environmental Science & Epithelial-to-Mesenchymal Transition (EMT). Environmental Science & Eamp; Technology, 2017, 51, 11401-11411.	4.6	21
59	Maternal PM2.5 exposure and abnormal placental nutrient transport. Ecotoxicology and Environmental Safety, 2021, 207, 111281.	2.9	21
60	New insights into potential estrogen agonistic activity of triazole fungicides and coupled metabolic disturbance. Journal of Hazardous Materials, 2022, 424, 127479.	6.5	21
61	Insights into the removal of polystyrene nanoplastics using the contaminated corncob-derived mesoporous biochar from mining area. Journal of Hazardous Materials, 2022, 433, 128756.	6.5	21
62	Sulfur dioxide and benzo(a)pyrene trigger apoptotic and anti-apoptotic signals at different post-exposure times in mouse liver. Chemosphere, 2015, 139, 318-325.	4.2	20
63	NO2 inhalation causes tauopathy by disturbing the insulin signaling pathway. Chemosphere, 2016, 165, 248-256.	4.2	19
64	Chitin synthesis inhibitors promote liver cancer cell metastasis via interfering with hypoxia-inducible factor 11±. Chemosphere, 2018, 206, 231-237.	4.2	19
65	Exposure to Nitro-PAHs interfere with germination and early growth of Hordeum vulgare via oxidative stress. Ecotoxicology and Environmental Safety, 2019, 180, 756-761.	2.9	19
66	Prenatal NO2 exposure and neurodevelopmental disorders in offspring mice: Transcriptomics reveals sex-dependent changes in cerebral gene expression. Environment International, 2020, 138, 105659.	4.8	19
67	Embryonic exposure to oxy-polycyclic aromatic hydrocarbon interfere with pancreatic \hat{l}^2 -cell development in zebrafish via altering DNA methylation and gene expression. Science of the Total Environment, 2019, 660, 1602-1609.	3.9	17
68	MicroRNA-338-5p modulates pulmonary hypertension-like injuries caused by SO $<$ sub $>2<$ /sub $>$, NO $<$ sub $>2<$ /sub $>$ and PM $<$ sub $>2.5<$ /sub $>$ co-exposure through targeting the HIF-1 $\hat{1}$ ±/Fhl-1 pathway. Toxicology Research, 2016, 5, 1548-1560.	0.9	16
69	Differential effects between one week and four weeks exposure to same mass of SO ₂ on synaptic plasticity in rat hippocampus. Environmental Toxicology, 2016, 31, 820-829.	2.1	16
70	PM2.5 exposure induces age-dependent hepatic lipid metabolism disorder in female mice. Journal of Environmental Sciences, 2020, 89, 227-237.	3.2	16
71	Atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in China's four cities: Characterization, risk assessment, and epithelial-to-mesenchymal transition induced by PM2.5. Atmospheric Pollution Research, 2021, 12, 101122.	1.8	16
72	Bisphenol A Analogs Induce Cellular Dysfunction in Human Trophoblast Cells in a Thyroid Hormone Receptor-Dependent Manner: <i>In Silico</i> and <i>In Vitro</i> Analyses. Environmental Science & Technology, 2022, 56, 8384-8394.	4.6	16

#	Article	IF	CITATIONS
73	Endogenous 2-Arachidonoylglycerol Alleviates Cyclooxygenases-2 Elevation-Mediated Neuronal Injury From SO ₂ Inhalation via PPARγ Pathway. Toxicological Sciences, 2015, 147, 535-548.	1.4	15
74	Comprehensive hippocampal metabolite responses to PM2.5 in young mice. Ecotoxicology and Environmental Safety, 2018, 165, 36-43.	2.9	15
75	Ambient NO2 exposure sex-specifically impairs myelin and contributes to anxiety and depression-like behaviors of C57BL/6J mice. Journal of Hazardous Materials, 2021, 416, 125836.	6.5	15
76	NO2 inhalation enhances asthma susceptibility in a rat model. Environmental Science and Pollution Research, 2017, 24, 27843-27854.	2.7	14
77	Synergistic effects of sulfur dioxide and polycyclic aromatic hydrocarbons on pulmonary pro-fibrosis via mir-30c-1-3p/ transforming growth factor \hat{l}^2 type II receptor axis. Chemosphere, 2019, 219, 268-276.	4.2	14
78	Sex difference in bronchopulmonary dysplasia of offspring in response to maternal PM2.5 exposure. Journal of Hazardous Materials, 2020, 389, 122033.	6.5	14
79	Coking wastewater increases micronucleus frequency in mouse in vivo via oxidative stress. Journal of Environmental Sciences, 2013, 25, 2123-2129.	3.2	13
80	PM2.5-associated nitro-PAH exposure promotes tumor cell metastasis through Hippo-YAP mediated transcriptional regulation. Science of the Total Environment, 2019, 678, 611-617.	3.9	13
81	Histone modification in the lung injury and recovery of mice in response to PM2.5 exposure. Chemosphere, 2019, 220, 127-136.	4.2	13
82	Endocannabinoid 2-arachidonoylglycerol protects inflammatory insults from sulfur dioxide inhalation via cannabinoid receptors in the brain. Journal of Environmental Sciences, 2017, 51, 265-274.	3.2	12
83	Embryonic exposure to soil samples from a gangue stacking area induces thyroid hormone disruption in zebrafish. Chemosphere, 2019, 236, 124337.	4.2	12
84	Maternal exposure to NO2 enhances airway sensitivity to allergens in BALB/c mice through the JAK-STAT6 pathway. Chemosphere, 2018, 200, 455-463.	4.2	11
85	In vitro PPAR \hat{I}^3 agonistic potential of chitin synthesis inhibitors and their energy metabolism-related hepatotoxicity. Science of the Total Environment, 2018, 615, 1126-1132.	3.9	11
86	Sulfur dioxide induces apoptosis via reactive oxygen species generation in rat cardiomyocytes. Environmental Science and Pollution Research, 2019, 26, 8758-8767.	2.7	11
87	Suppression of NADPH oxidase 4 inhibits PM2.5-induced cardiac fibrosis through ROS-P38 MAPK pathway. Science of the Total Environment, 2022, 837, 155558.	3.9	11
88	Atmospheric PM2.5 aspiration causes tauopathy by disturbing the insulin signaling pathway. Ecotoxicology and Environmental Safety, 2019, 169, 301-305.	2.9	9
89	Quasi-ultrafine particles promote cell metastasis via HMGB1-mediated cancer cell adhesion. Environmental Pollution, 2020, 256, 113390.	3.7	9
90	Comparative studies on regional variations in PM2.5 in the induction of myocardial hypertrophy in mice. Science of the Total Environment, 2021, 775, 145179.	3.9	9

#	Article	IF	Citations
91	Sulfur dioxide-induced exacerbation of airway inflammation via reactive oxygen species production and the toll-like receptor 4/nuclear factor-ÎB pathway in asthmatic mice. Toxicology and Industrial Health, 2021, 37, 564-572.	0.6	9
92	Assessing the phytotoxicity of different particle-size aged refuse using Zea mays L. bioassay. Chemosphere, 2008, 74, 106-111.	4.2	8
93	Maternal NO2 exposure induces cardiac hypertrophy in male offspring via ROS-HIF-1α transcriptional regulation and aberrant DNA methylation modification of Csx/Nkx2.5. Archives of Toxicology, 2018, 92, 1563-1579.	1.9	8
94	In-situ examination of graphene and graphene oxide impact on the depuration of phenanthrene and fluoranthene adsorbed onto spinach (Spinacia oleracea L.) leaf surfaces. Environmental Pollution, 2018, 237, 968-976.	3.7	7
95	Comprehensive assessment of estrogenic activities of parabens by in silico approach and in vitro assays. Science of the Total Environment, 2022, 845, 157194.	3.9	7
96	Dysfunction of the Hippo-Yap Pathway Drives Lung Cancer Metastasis Induced by 1-Nitropyrene through Adhesion Molecular Activation. Environmental Science and Technology Letters, 2019, 6, 270-276.	3.9	6
97	In situ determination of multiple polycyclic aromatic hydrocarbons uptake by crop leaf surfaces using multi-way models. Environmental Pollution, 2016, 218, 523-529.	3.7	4
98	The Role of Cyclooxygenases-2 in Benzo($\langle i\rangle a\langle i\rangle$) pyrene-Induced Neurotoxicity of Cortical Neurons. Chemical Research in Toxicology, 2020, 33, 1364-1373.	1.7	4
99	The phytotoxicities of agricultural soil samples from a coal gangue stacking area to several maize cultivars (Zea mays L.). Environmental Science and Pollution Research, 2021, 28, 52319-52328.	2.7	2
100	Investigating photo-driven arsenics' behavior and their glucose metabolite toxicity by the typical metallic oxides in ambient PM2.5. Ecotoxicology and Environmental Safety, 2020, 191, 110162.	2.9	1
101	Gestational exposure to NO2 aggravates placental senescence. Environmental Research, 2022, 212, 113263.	3.7	1
102	Particle matters induce airway epithelial barrier dysfunction in vivo and in vitro: from a more realistic inhalation scenario. Environmental Science: Nano, 0, , .	2.2	0