## Liuyang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/356027/publications.pdf Version: 2024-02-01



Ι ЩУЛИС 7ΗΛΝΟ

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Materials Today, 2018, 21, 1042-1063.                                                                       | 14.2 | 1,134     |
| 2  | Dual Cocatalysts in TiO <sub>2</sub> Photocatalysis. Advanced Materials, 2019, 31, e1807660.                                                                                         | 21.0 | 796       |
| 3  | Emerging Sâ€Scheme Photocatalyst. Advanced Materials, 2022, 34, e2107668.                                                                                                            | 21.0 | 717       |
| 4  | In Situ Grown Monolayer Nâ€Đoped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO <sub>2</sub> Reduction. Advanced Materials, 2019, 31, e1902868.          | 21.0 | 515       |
| 5  | Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Applied Surface Science, 2017, 422, 518-527.                                 | 6.1  | 397       |
| 6  | First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Applied Catalysis B:<br>Environmental, 2018, 224, 983-999.                                               | 20.2 | 382       |
| 7  | Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Applied Surface Science, 2018, 441, 12-22.               | 6.1  | 364       |
| 8  | Core–Shell Nitrogenâ€Doped Carbon Hollow Spheres/Co <sub>3</sub> O <sub>4</sub> Nanosheets as<br>Advanced Electrode for Highâ€Performance Supercapacitor. Small, 2018, 14, e1702407. | 10.0 | 309       |
| 9  | Nickel-based materials for supercapacitors. Materials Today, 2019, 25, 35-65.                                                                                                        | 14.2 | 247       |
| 10 | Hollow Carbon Spheres and Their Hybrid Nanomaterials in Electrochemical Energy Storage. Advanced<br>Energy Materials, 2019, 9, 1803900.                                              | 19.5 | 220       |
| 11 | Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo<br>red and Cr(VI) ions. Applied Surface Science, 2019, 478, 981-990.                  | 6.1  | 204       |
| 12 | Review on DFT calculation of <i>s</i> â€ŧriazineâ€based carbon nitride. , 2019, 1, 32-56.                                                                                            |      | 193       |
| 13 | Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sensors and Actuators B: Chemical, 2021, 331, 129425.                                             | 7.8  | 174       |
| 14 | Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor. Journal of Materials Science and Technology, 2020, 47, 113-121.      | 10.7 | 160       |
| 15 | Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nature Communications, 2021, 12, 4936.                           | 12.8 | 159       |
| 16 | Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. Journal of Colloid and Interface Science, 2021, 588, 637-645.   | 9.4  | 156       |
| 17 | Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance. Chemical Communications, 2018, 54, 3731-3734.                               | 4.1  | 140       |
| 18 | Adsorption investigation of CO2 on g-C3N4 surface by DFT calculation. Journal of CO2 Utilization, 2017, 21, 327-335.                                                                 | 6.8  | 134       |

LIUYANG ZHANG

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation.<br>Applied Surface Science, 2018, 462, 606-614.                                                                                               | 6.1  | 112       |
| 20 | EPR Investigation on Electron Transfer of 2D/3D g <sub>3</sub> N <sub>4</sub> /ZnO S‣cheme<br>Heterojunction for Enhanced CO <sub>2</sub> Photoreduction. Advanced Sustainable Systems, 2022,<br>6, 2100264.                                    | 5.3  | 112       |
| 21 | ZIF-67 derived nickel cobalt sulfide hollow cages for high-performance supercapacitors. Applied<br>Surface Science, 2020, 504, 144501.                                                                                                          | 6.1  | 107       |
| 22 | Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst. Journal of Materials Science and Technology, 2022, 112, 1-10.                                                                  | 10.7 | 101       |
| 23 | Sandwichâ€5hell Structured CoMn <sub>2</sub> O <sub>4</sub> /C Hollow Nanospheres for<br>Performanceâ€Enhanced Sodiumâ€ion Hybrid Supercapacitor. Advanced Energy Materials, 2022, 12, .                                                        | 19.5 | 101       |
| 24 | In-situ growth of few-layer graphene on ZnO with intimate interfacial contact for enhanced photocatalytic CO2 reduction activity. Chemical Engineering Journal, 2021, 411, 128501.                                                              | 12.7 | 99        |
| 25 | ZnO/COF S-scheme heterojunction for improved photocatalytic H2O2 production performance.<br>Chemical Engineering Journal, 2022, 444, 136584.                                                                                                    | 12.7 | 94        |
| 26 | CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production. Journal of Materials Science and Technology, 2020, 56, 170-178.                                                                      | 10.7 | 92        |
| 27 | Binary Solvent Engineering for High-Performance Two-Dimensional Perovskite Solar Cells. ACS<br>Sustainable Chemistry and Engineering, 2019, 7, 3487-3495.                                                                                       | 6.7  | 90        |
| 28 | Rationally designed hierarchical NiCo2O4–C@Ni(OH)2 core-shell nanofibers for high performance<br>supercapacitors. Carbon, 2019, 152, 652-660.                                                                                                   | 10.3 | 83        |
| 29 | Quenching induced hierarchical 3D porous g-C <sub>3</sub> N <sub>4</sub> with enhanced photocatalytic CO <sub>2</sub> reduction activity. Chemical Communications, 2019, 55, 14023-14026.                                                       | 4.1  | 83        |
| 30 | Synthesis of MgNiCo LDH hollow structure derived from ZIF-67 as superb adsorbent for Congo red.<br>Journal of Colloid and Interface Science, 2022, 612, 598-607.                                                                                | 9.4  | 83        |
| 31 | Enhanced Performance of Planar Perovskite Solar Cell by Graphene Quantum Dot Modification. ACS<br>Sustainable Chemistry and Engineering, 2018, 6, 8631-8640.                                                                                    | 6.7  | 76        |
| 32 | S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chinese Journal of Catalysis, 2022, 43, 1657-1666.                                                                                                             | 14.0 | 75        |
| 33 | NiCo <sub>2</sub> S <sub>4</sub> Nanotubes Anchored 3D Nitrogen-Doped Graphene Framework as<br>Electrode Material with Enhanced Performance for Asymmetric Supercapacitors. ACS Sustainable<br>Chemistry and Engineering, 2019, 7, 11157-11165. | 6.7  | 73        |
| 34 | Hollow CdS-based photocatalysts. Journal of Materiomics, 2021, 7, 419-439.                                                                                                                                                                      | 5.7  | 72        |
| 35 | Direct Z-scheme PDA-modified ZnO hierarchical microspheres with enhanced photocatalytic CO2 reduction performance. Applied Surface Science, 2018, 457, 1096-1102.                                                                               | 6.1  | 67        |
| 36 | Plasmon-induced interfacial charge-transfer transition prompts enhanced CO2 photoreduction over<br>Cu/Cu2O octahedrons. Chemical Engineering Journal, 2020, 397, 125390.                                                                        | 12.7 | 65        |

LIUYANG ZHANG

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Single-atom heterogeneous photocatalysts. Chem Catalysis, 2021, 1, 1173-1214.                                                                                                                                                   | 6.1  | 59        |
| 38 | Holey Graphene for Electrochemical Energy Storage. Cell Reports Physical Science, 2020, 1, 100215.                                                                                                                              | 5.6  | 58        |
| 39 | 0D/2D (Fe0.5Ni0.5)S2/rGO nanocomposite with enhanced supercapacitor and lithium ion battery performance. Journal of Power Sources, 2019, 426, 266-274.                                                                          | 7.8  | 54        |
| 40 | 0D/2D NiS/CdS nanocomposite heterojunction photocatalyst with enhanced photocatalytic H2 evolution activity. Applied Surface Science, 2021, 554, 149622.                                                                        | 6.1  | 48        |
| 41 | First-principle investigation on charge carrier transfer in transition-metal single atoms loaded g-C3N4. Applied Surface Science, 2018, 459, 385-392.                                                                           | 6.1  | 43        |
| 42 | N-doped graphene framework supported nickel cobalt oxide as supercapacitor electrode with enhanced performance. Applied Surface Science, 2019, 484, 135-143.                                                                    | 6.1  | 43        |
| 43 | Core–Shell Structured C@SiO <sub>2</sub> Hollow Spheres Decorated with Nickel Nanoparticles as<br>Anode Materials for Lithiumâ€ion Batteries. Small, 2021, 17, e2103673.                                                        | 10.0 | 43        |
| 44 | H2O molecule adsorption on s-triazine-based g-C3N4. Chinese Journal of Catalysis, 2021, 42, 115-122.                                                                                                                            | 14.0 | 42        |
| 45 | Temperature effect on the binder-free nickel copper oxide nanowires with superior supercapacitor performance. Nanoscale, 2014, 6, 12981-12989.                                                                                  | 5.6  | 38        |
| 46 | Enhanced efficiency of perovskite solar cells by PbS quantum dot modification. Applied Surface<br>Science, 2019, 487, 32-40.                                                                                                    | 6.1  | 37        |
| 47 | Improvement in flexibility and volumetric performance for supercapacitor application and the effect of Ni–Fe ratio on electrode behaviour. Journal of Materials Chemistry A, 2015, 3, 7607-7615.                                | 10.3 | 32        |
| 48 | Unravelling the correlation between nickel to copper ratio of binary oxides and their superior supercapacitor performance. Electrochimica Acta, 2017, 234, 82-92.                                                               | 5.2  | 31        |
| 49 | A cheap and non-destructive approach to increase coverage/loading of hydrophilic hydroxide on<br>hydrophobic carbon for lightweight and high-performance supercapacitors. Scientific Reports, 2016,<br>5, 18108.                | 3.3  | 29        |
| 50 | Design of highly-active photocatalytic materials for solar fuel production. Chemical Engineering<br>Journal, 2021, 421, 127732.                                                                                                 | 12.7 | 27        |
| 51 | Nanoâ€6ized Niobium Tungsten Oxide Anode for Advanced Fastâ€Charge Lithiumâ€Ion Batteries. Small, 2022,<br>18, e2107365.                                                                                                        | 10.0 | 26        |
| 52 | Highly Stable, New, Organicâ€Inorganic Perovskite<br>(CH <sub>3</sub> NH <sub>3</sub> ) <sub>2</sub> PdBr <sub>4</sub> : Synthesis, Structure, and Physical<br>Properties. Chemistry - A European Journal, 2018, 24, 4991-4998. | 3.3  | 25        |
| 53 | Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni-Co-O/Ni(OH)2 core/shell electrodes. Scientific Reports, 2016, 6, 21566.                                                  | 3.3  | 24        |
| 54 | Remarkable improvement in supercapacitor performance by sulfur introduction during a one-step synthesis of nickel hydroxide. Physical Chemistry Chemical Physics, 2017, 19, 10462-10469.                                        | 2.8  | 20        |

LIUYANG ZHANG

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Sulfideâ€Based Nickelâ€Plated Fabrics for Foldable Quasiâ€Solidâ€State Supercapacitors. Energy and<br>Environmental Materials, 2022, 5, 883-891.                                            | 12.8 | 19        |
| 56 | Nickelâ€ʿcobalt selenide@N-doped carbon towards high-performance anode materials for sodium-ion<br>batteries. Journal of Energy Storage, 2022, 51, 104522.                                  | 8.1  | 19        |
| 57 | Substrate-assisted self-organization of Ni–Cu spherical double hydroxide (SDH) and its excellent pseudo-capacitive performance. Journal of Materials Chemistry A, 2014, 2, 4660.            | 10.3 | 18        |
| 58 | A Comparative Study of Cobalt Chalcogenides as the Electrode Materials on Lithium‣ulfur Battery<br>Performance. Small Methods, 2022, 6, e2101269.                                           | 8.6  | 14        |
| 59 | Significant capacitance enhancement induced by cyclic voltammetry in pine needle-like Ni-Co-Cu<br>multicomponent electrode. Journal of Materials Science and Technology, 2021, 78, 100-109. | 10.7 | 13        |
| 60 | Light enhanced energy storage ability through a hybrid plasmonic Ag nanowire decorated hydroxide<br>"skin structure― Nanoscale, 2017, 9, 18430-18437.                                       | 5.6  | 9         |
| 61 | Surface modification of g-C3N4: first-principles study. Interface Science and Technology, 2020, 31, 509-539.                                                                                | 3.3  | 2         |
| 62 | Graphene oxide-based modified electrodes for high-performance supercapacitors. , 2022, , 239-266.                                                                                           |      | 0         |