
Yogan Khatri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3560248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epoxidation and Late-Stage C–H Functionalization by P450 Taml Are Mediated by Variant Heme-Iron Oxidizing Species. ACS Catalysis, 2022, 12, 3731-3742.	5.5	9
2	Structural Diversification of Hapalindole and Fischerindole Natural Products via Cascade Biocatalysis. ACS Catalysis, 2021, 11, 4670-4681.	5.5	6
3	Engineering P450 Taml as an Iterative Biocatalyst for Selective Late-Stage C–H Functionalization and Epoxidation of Tirandamycin Antibiotics. ACS Catalysis, 2021, 11, 8304-8316.	5.5	18
4	Structure and Function of NzeB, a Versatile C–C and C–N Bond-Forming Diketopiperazine Dimerase. Journal of the American Chemical Society, 2020, 142, 17413-17424.	6.6	46
5	Molecular Basis of Iterative C–H Oxidation by Taml, a Multifunctional P450 Monooxygenase from the Tirandamycin Biosynthetic Pathway. ACS Catalysis, 2020, 10, 13445-13454.	5.5	20
6	A Versatile Chemoenzymatic Synthesis for the Discovery of Potent Cryptophycin Analogs. ACS Chemical Biology, 2020, 15, 524-532.	1.6	12
7	Multicomponent Microscale Biosynthesis of Unnatural Cyanobacterial Indole Alkaloids. ACS Synthetic Biology, 2020, 9, 1349-1360.	1.9	19
8	Engineered Production of Hapalindole Alkaloids in the Cyanobacterium <i>Synechococcus</i> sp. UTEX 2973. ACS Synthetic Biology, 2019, 8, 1941-1951.	1.9	28
9	Structure-Based Engineering of Steroidogenic CYP260A1 for Stereo- and Regioselective Hydroxylation of Progesterone. ACS Chemical Biology, 2018, 13, 1021-1028.	1.6	28
10	Human P450 CYP17A1: Control of Substrate Preference by Asparagine 202. Biochemistry, 2018, 57, 764-771.	1.2	8
11	Structural insights into oxidation of medium-chain fatty acids and flavanone by myxobacterial cytochrome P450 CYP267B1. Biochemical Journal, 2018, 475, 2801-2817.	1.7	2
12	Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1). Journal of Steroid Biochemistry and Molecular Biology, 2017, 170, 2-18.	1.2	38
13	An indoleâ€deficient <i>Escherichia coli</i> strain improves screening of cytochromes P450 for biotechnological applications. Biotechnology and Applied Biochemistry, 2017, 64, 315-326.	1.4	8
14	Investigating the effect of available redox protein ratios for the conversion of a steroid by a myxobacterial <scp>CYP</scp> 260A1. FEBS Letters, 2017, 591, 1126-1140.	1.3	24
15	Investigating the roles of T224 and T232 in the oxidation of cinnamaldehyde catalyzed by myxobacterial <scp>CYP</scp> 260B1. FEBS Letters, 2017, 591, 39-46.	1.3	5
16	The impact of the clinical CYP11B2 mutation V386A strongly depends on the enzyme's genetic background. Endocrine Journal, 2017, 64, 457-461.	0.7	2
17	Scrutiny of electrochemically-driven electrocatalysis of C-19 steroid 1α-hydroxylase (CYP260A1) from Sorangium cellulosum So ce56. Analytical Biochemistry, 2016, 513, 28-35.	1.1	11
18	Substrate Hunting for the Myxobacterial CYP260A1 Revealed New 1αâ€Hydroxylated Products from Câ€19 Steroids. ChemBioChem, 2016, 17, 90-101.	1.3	24

Yogan Khatri

#	Article	IF	CITATIONS
19	Structural characterization of <scp>CYP</scp> 260A1 from <i>Sorangium cellulosum</i> to investigate the 1αâ€hydroxylation of a mineralocorticoid. FEBS Letters, 2016, 590, 4638-4648.	1.3	10
20	Direct electrochemistry of CYP109C1, CYP109C2 and CYP109D1 from Sorangium cellulosum So ce56. Electrochimica Acta, 2016, 192, 72-79.	2.6	1
21	Structure–function analysis for the hydroxylation of Δ4 C21â€steroids by the myxobacterial CYP260B1. FEBS Letters, 2016, 590, 1838-1851.	1.3	13
22	A single terpene synthase is responsible for a wide variety of sesquiterpenes in Sorangium cellulosum Soce56. Organic and Biomolecular Chemistry, 2016, 14, 3385-3393.	1.5	22
23	CYP267A1 and CYP267B1 from Sorangium cellulosum So ce56 are Highly Versatile Drug Metabolizers. Drug Metabolism and Disposition, 2016, 44, 495-504.	1.7	13
24	Highly Efficient CYP167A1 (EpoK) dependent Epothilone B Formation and Production of 7-Ketone Epothilone D as a New Epothilone Derivative. Scientific Reports, 2015, 5, 14881.	1.6	26
25	Conversions of Tricyclic Antidepressants and Antipsychotics with Selected P450s from <i>Sorangium cellulosum</i> So ce56. Drug Metabolism and Disposition, 2015, 43, 392-399.	1.7	25
26	ldentification of new substrates for the CYP106A1â€mediated 11â€oxidation and investigation of the reaction mechanism. FEBS Letters, 2015, 589, 2320-2326.	1.3	17
27	A natural hemeâ€signature variant of <scp>CYP</scp> 267A1 from <i>SorangiumÂcellulosum</i> So ce56 executes diverse ï‰â€hydroxylation. FEBS Journal, 2015, 282, 74-88.	2.2	21
28	Characterization of the Gene Cluster CYP264B1â€ <i>geo</i> A from <i>Sorangium cellulosum</i> So ce56: Biosynthesis of (+)â€Eremophilene and Its Hydroxylation. ChemBioChem, 2015, 16, 337-344.	1.3	32
29	Active site proton delivery and the lyase activity of human CYP17A1. Biochemical and Biophysical Research Communications, 2014, 443, 179-184.	1.0	60
30	Kinetic solvent isotope effect in steadyâ€state turnover by CYP19A1 suggests involvement of Compound 1 for both hydroxylation and aromatization steps. FEBS Letters, 2014, 588, 3117-3122.	1.3	41
31	Application of a new versatile electron transfer system for cytochrome P450-based Escherichia coli whole-cell bioconversions. Applied Microbiology and Biotechnology, 2013, 97, 7741-7754.	1.7	45
32	Kinetic Solvent Isotope Effect in Human P450 CYP17A1-Mediated Androgen Formation: Evidence for a Reactive Peroxoanion Intermediate. Journal of the American Chemical Society, 2013, 135, 16245-16247.	6.6	73
33	Novel family members of CYP109 from <i>Sorangium cellulosum</i> So ce56 exhibit characteristic biochemical and biophysical properties. Biotechnology and Applied Biochemistry, 2013, 60, 18-29.	1.4	28
34	CYP264B1 from Sorangium cellulosum So ce56: a fascinating norisoprenoid and sesquiterpene hydroxylase. Applied Microbiology and Biotechnology, 2012, 95, 123-133.	1.7	32
35	Investigation of cytochromes P450 in myxobacteria: Excavation of cytochromes P450 from the genome of <i>Sorangium cellulosum</i> So ce56. FEBS Letters, 2011, 585, 1506-1513.	1.3	13
36	Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis. Applied Microbiology and Biotechnology, 2010, 87, 595-607.	1.7	93

Yogan Khatri

#	Article	IF	CITATIONS
37	Regioselective hydroxylation of norisoprenoids by CYP109D1 from Sorangium cellulosum So ce56. Applied Microbiology and Biotechnology, 2010, 88, 485-495.	1.7	57
38	The CYPome of Sorangium cellulosum So ce56 and Identification of CYP109D1 as a New Fatty Acid Hydroxylase. Chemistry and Biology, 2010, 17, 1295-1305.	6.2	50
39	Genome Mining in Sorangium cellulosum So ce56. Journal of Biological Chemistry, 2009, 284, 28590-28598.	1.6	38