Subir Sachdev

List of Publications by Citations

Source: https://exaly.com/author-pdf/3560217/subir-sachdev-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 424
 30,188
 90
 158

 papers
 citations
 h-index
 g-index

 449
 34,080
 6
 7.94

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
424	Quantum Phase Transitions 2011 ,		1413
423	Deconfined quantum critical points. <i>Science</i> , 2004 , 303, 1490-4	33.3	884
422	Gapless spin-fluid ground state in a random quantum Heisenberg magnet. <i>Physical Review Letters</i> , 1993 , 70, 3339-3342	7.4	867
421	Large-N expansion for frustrated quantum antiferromagnets. <i>Physical Review Letters</i> , 1991 , 66, 1773-1	7 7 64	629
420	Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets. <i>Physical Review Letters</i> , 1989 , 62, 1694-1697	7.4	530
419	Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm. <i>Physical Review B</i> , 2004 , 70,	3.3	504
418	KagomEand triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. <i>Physical Review B</i> , 1992 , 45, 12377-12396	3.3	491
417	Quantum Phase Transitions 2000 ,		455
416	Ising and spin orders in the iron-based superconductors. <i>Physical Review B</i> , 2008 , 78,	3.3	406
415	Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes. <i>Physical Review B</i> , 2007 , 76,	3.3	403
414	Spin-Peierls, valence-bond solid, and Nël ground states of low-dimensional quantum antiferromagnets. <i>Physical Review B</i> , 1990 , 42, 4568-4589	3.3	384
413	Bond-operator representation of quantum spins: Mean-field theory of frustrated quantum Heisenberg antiferromagnets. <i>Physical Review B</i> , 1990 , 41, 9323-9329	3.3	383
412	Weak magnetism and non-Fermi liquids near heavy-fermion critical points. <i>Physical Review B</i> , 2004 , 69,	3.3	367
411	Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state. <i>Physical Review B</i> , 1994 , 49, 11919-11961	3.3	341
410	Quantum criticality: competing ground states in low dimensions. <i>Science</i> , 2000 , 288, 475-80	33.3	334
409	Radiation-induced magnetoresistance oscillations in a 2D electron gas. <i>Physical Review Letters</i> , 2003 , 91, 086803	7.4	333
408	Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. <i>Science</i> , 2016 , 351, 1058-61	33.3	328

407	Quantum magnetism and criticality. <i>Nature Physics</i> , 2008 , 4, 173-185	16.2	320	
406	Quantum phase transitions of metals in two spatial dimensions. II. Spin density wave order. <i>Physical Review B</i> , 2010 , 82,	3.3	295	
405	Colloquium: Order and quantum phase transitions in the cuprate superconductors. <i>Reviews of Modern Physics</i> , 2003 , 75, 913-932	40.5	293	
404	Hidden Fermi surfaces in compressible states of gauge-gravity duality. <i>Physical Review B</i> , 2012 , 85,	3.3	280	
403	Fractionalized fermi liquids. <i>Physical Review Letters</i> , 2003 , 90, 216403	7.4	270	
402	Quantum criticality. <i>Physics Today</i> , 2011 , 64, 29-35	0.9	252	
401	Quantum phase transitions of metals in two spatial dimensions. I. Ising-nematic order. <i>Physical Review B</i> , 2010 , 82,	3.3	245	
400	Inelastic scattering and pair breaking in anisotropic and isotropic superconductors. <i>Physical Review B</i> , 1988 , 37, 4975-4986	3.3	244	
399	Nonzero-temperature transport near quantum critical points. <i>Physical Review B</i> , 1997 , 56, 8714-8733	3.3	234	
398	Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography. <i>Physical Review B</i> , 2017 , 95,	3.3	231	
397	Bekenstein-Hawking Entropy and Strange Metals. <i>Physical Review X</i> , 2015 , 5,	9.1	228	
396	Quantum critical transport in clean graphene. <i>Physical Review B</i> , 2008 , 78,	3.3	227	
395	Holographic metals and the fractionalized fermi liquid. <i>Physical Review Letters</i> , 2010 , 105, 151602	7.4	224	
394	Theory of the Structure Factor of Metallic Glasses. <i>Physical Review Letters</i> , 1984 , 53, 1947-1950	7.4	224	
393	Some features of the phase diagram of the square lattice SU(N) antiferromagnet. <i>Nuclear Physics B</i> , 1989 , 316, 609-640	2.8	223	
392	Quench dynamics across quantum critical points. <i>Physical Review A</i> , 2004 , 69,	2.6	220	
391	Spin-ordering quantum transitions of superconductors in a magnetic field. <i>Physical Review Letters</i> , 2001 , 87, 067202	7.4	219	
390	Universal quantum-critical dynamics of two-dimensional antiferromagnets. <i>Physical Review Letters</i> , 1992 , 69, 2411-2414	7.4	216	

389	LARGE N EXPANSION FOR FRUSTRATED AND DOPED QUANTUM ANTIFERROMAGNETS. International Journal of Modern Physics B, 1991 , 05, 219-249	1.1	214
388	Order in metallic glasses and icosahedral crystals. <i>Physical Review B</i> , 1985 , 32, 4592-4606	3.3	193
387	Conservation laws, anisotropy, and "self-organized criticality" in noisy nonequilibrium systems. <i>Physical Review Letters</i> , 1990 , 64, 1927-1930	7.4	190
386	Quantum critical transport, duality, and M theory. <i>Physical Review D</i> , 2007 , 75,	4.9	189
385	Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E3026-32	11.5	176
384	Quantum phase transitions. <i>Physics World</i> , 1999 , 12, 33-38	0.5	171
383	What Can Gauge-Gravity Duality Teach Us About Condensed Matter Physics?. <i>Annual Review of Condensed Matter Physics</i> , 2012 , 3, 9-33	19.7	164
382	Bond order in two-dimensional metals with antiferromagnetic exchange interactions. <i>Physical Review Letters</i> , 2013 , 111, 027202	7.4	162
381	Cooper pairing in non-Fermi liquids. <i>Physical Review B</i> , 2015 , 91,	3.3	157
380	Finite-temperature properties of quantum antiferromagnets in a uniform magnetic field in one and two dimensions. <i>Physical Review B</i> , 1994 , 50, 258-272	3.3	156
379	Charge Order, Superconductivity, and a Global Phase Diagram of Doped Antiferromagnets. <i>Physical Review Letters</i> , 1999 , 83, 3916-3919	7.4	155
378	Quantum fluctuations of a nearly critical Heisenberg spin glass. <i>Physical Review B</i> , 2001 , 63,	3.3	152
377	Renormalization-group fixed points, universal phase diagram, and 1N expansion for quantum liquids with interactions near the unitarity limit. <i>Physical Review A</i> , 2007 , 75,	2.6	147
376	Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator. <i>Nature</i> , 2019 , 568, 207-211	50.4	144
375	Universal magnetic properties of La2- delta Sr delta CuO4 at intermediate temperatures. <i>Physical Review Letters</i> , 1993 , 71, 169-172	7.4	144
374	Supersymmetric Sachdev-Ye-Kitaev models. <i>Physical Review D</i> , 2017 , 95,	4.9	142
373	Keldysh approach for nonequilibrium phase transitions in quantum optics: Beyond the Dicke model in optical cavities. <i>Physical Review A</i> , 2013 , 87,	2.6	141
372	Spin dynamics and transport in gapped one-dimensional Heisenberg antiferromagnets at nonzero temperatures. <i>Physical Review B</i> , 1998 , 57, 8307-8339	3.3	141

371	Dicke quantum spin glass of atoms and photons. <i>Physical Review Letters</i> , 2011 , 107, 277202	7.4	140
370	Effective-field theory of local-moment formation in disordered metals. <i>Physical Review Letters</i> , 1989 , 63, 82-85	7.4	138
369	Thermodynamic behavior near a metal-insulator transition. <i>Physical Review Letters</i> , 1988 , 61, 597-600	7.4	138
368	Quantum impurity in a nearly critical two-dimensional antiferromagnet. <i>Science</i> , 1999 , 286, 2479-82	33.3	137
367	Competing orders in a magnetic field: Spin and charge order in the cuprate superconductors. <i>Physical Review B</i> , 2002 , 66,	3.3	133
366	Quantum phase transitions in d-wave superconductors. <i>Physical Review Letters</i> , 2000 , 85, 4940-3	7.4	132
365	Landau theory of quantum spin glasses of rotors and Ising spins. <i>Physical Review B</i> , 1995 , 52, 384-410	3.3	128
364	Entanglement entropy in the O(N) model. <i>Physical Review B</i> , 2009 , 80,	3.3	127
363	Topological defects coupling smectic modulations to intra-unit-cell nematicity in cuprates. <i>Science</i> , 2011 , 333, 426-30	33.3	126
362	Impurity in a d-wave superconductor: Kondo effect and STM spectra. <i>Physical Review Letters</i> , 2001 , 86, 296-9	7.4	126
361	Competing orders and quantum criticality in doped antiferromagnets. <i>Physical Review B</i> , 2000 , 62, 672	1-6.344	126
360	Mott insulators in strong electric fields. <i>Physical Review B</i> , 2002 , 66,	3.3	123
359	Quantum-critical relativistic magnetotransport in graphene. Physical Review B, 2008, 78,	3.3	121
358	Numerical study of fermion and boson models with infinite-range random interactions. <i>Physical Review B</i> , 2016 , 94,	3.3	120
357	Solvable spin glass of quantum rotors. <i>Physical Review Letters</i> , 1993 , 70, 4011-4014	7.4	119
356	Putting competing orders in their place near the Mott transition. <i>Physical Review B</i> , 2005 , 71,	3.3	118
355	Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene. <i>Physical Review B</i> , 2016 , 93,	3.3	115
354	Statistical mechanics of pentagonal and icosahedral order in dense liquids. <i>Physical Review B</i> , 1985 , 32, 1480-1502	3.3	114

353	Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals. <i>Science</i> , 2012 , 338, 1606-9	33.3	113
352	Low Temperature Relaxational Dynamics of the Ising Chain in a Transverse Field. <i>Physical Review Letters</i> , 1997 , 78, 2220-2223	7.4	109
351	Mean field theory of a quantum heisenberg spin glass. <i>Physical Review Letters</i> , 2000 , 85, 840-3	7.4	109
350	Nonequilibrium Gross-Pitaevskii dynamics of boson lattice models. <i>Physical Review A</i> , 2002 , 66,	2.6	107
349	Low Temperature Spin Diffusion in the One-Dimensional Quantum O(3) Nonlinear IModel. <i>Physical Review Letters</i> , 1997 , 78, 943-946	7.4	106
348	Fermi surface and pseudogap evolution in a cuprate superconductor. <i>Science</i> , 2014 , 344, 608-11	33.3	101
347	Action of hedgehog instantons in the disordered phase of the (2 + 1)-dimensional CPNII model. <i>Nuclear Physics B</i> , 1990 , 344, 557-595	2.8	101
346	Quantum phase transitions in frustrated quantum antiferromagnets. <i>Nuclear Physics B</i> , 1994 , 426, 601-	-64⅓	100
345	Crossover and scaling in a nearly antiferromagnetic Fermi liquid in two dimensions. <i>Physical Review B</i> , 1995 , 51, 14874-14891	3.3	99
344	Quantum phase transition in an atomic bose gas with a feshbach resonance. <i>Physical Review Letters</i> , 2004 , 93, 020405	7.4	98
343	Double-Layer Quantum Hall Antiferromagnetism at Filling Fraction 2/m where m is an Odd Integer. <i>Physical Review Letters</i> , 1997 , 79, 917-920	7.4	97
342	Universal magnetic properties of frustrated quantum antiferromagnets in two dimensions. <i>Physical Review Letters</i> , 1994 , 72, 2089-2092	7.4	96
341	Hole motion in a quantum Nal state. <i>Physical Review B</i> , 1989 , 39, 12232-12247	3.3	96
340	Spin dynamics of nearly localized electrons. <i>Physical Review Letters</i> , 1986 , 57, 2061-2064	7.4	96
339	Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state. <i>Nature Physics</i> , 2016 , 12, 150-156	16.2	94
338	Quantum chaos on a critical Fermi surface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 1844-1849	11.5	93
337	Angular fluctuations of a multicomponent order describe the pseudogap of YBa2Cu3O(6+x). <i>Science</i> , 2014 , 343, 1336-9	33.3	93
336	Triangular antiferromagnetism on the honeycomb lattice of twisted bilayer graphene. <i>Physical Review B</i> , 2018 , 98,	3.3	92

(2009-1984)

335	Atom in a damped cavity. Physical Review A, 1984, 29, 2627-2633	2.6	91
334	Large-S expansion for quantum antiferromagnets on a triangular lattice. <i>Journal of Physics Condensed Matter</i> , 1994 , 6, 8891-8902	1.8	89
333	Competing density-wave orders in a one-dimensional hard-boson model. <i>Physical Review B</i> , 2004 , 69,	3.3	88
332	Quantum impurity dynamics in two-dimensional antiferromagnets and superconductors. <i>Physical Review B</i> , 2000 , 61, 15152-15184	3.3	88
331	Collective cyclotron motion of the relativistic plasma in graphene. <i>Physical Review B</i> , 2008 , 78,	3.3	86
330	Canted antiferromagnetic and spin-singlet quantum Hall states in double-layer systems. <i>Physical Review B</i> , 1998 , 58, 4672-4693	3.3	86
329	Algebraic charge liquids. <i>Nature Physics</i> , 2008 , 4, 28-31	16.2	85
328	Quantum phases of matter on a 256-atom programmable quantum simulator. <i>Nature</i> , 2021 , 595, 227-2	3 3 0.4	85
327	Theory of finite-temperature crossovers near quantum critical points close to,or above, their upper-critical dimension. <i>Physical Review B</i> , 1997 , 55, 142-163	3.3	83
326	Renormalization group theory of nematic ordering in d-wave superconductors. <i>Physical Review B</i> , 2008 , 78,	3.3	81
325	Continuum quantum ferromagnets at finite temperature and the quantum Hall effect. <i>Physical Review Letters</i> , 1995 , 75, 3509-3512	7.4	81
324	Ground States of Quantum Antiferromagnets in Two Dimensions. <i>Annals of Physics</i> , 2002 , 298, 58-122	2.5	80
323	Universal relaxational dynamics near two-dimensional quantum critical points. <i>Physical Review B</i> , 1999 , 59, 14054-14073	3.3	80
322	Rāyi entropies for free field theories. <i>Journal of High Energy Physics</i> , 2012 , 2012, 1	5.4	79
321	Quantum Butterfly Effect in Weakly Interacting Diffusive Metals. <i>Physical Review X</i> , 2017 , 7,	9.1	78
320	Topological order, emergent gauge fields, and Fermi surface reconstruction. <i>Reports on Progress in Physics</i> , 2019 , 82, 014001	14.4	78
319	Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice. <i>Nature Physics</i> , 2014 , 10, 289-293	16.2	75
318	Global phase diagrams of frustrated quantum antiferromagnets in two dimensions: Doubled Chern-Simons theory. <i>Physical Review B</i> , 2009 , 79,	3.3	75

317	Theory of the nodal nematic quantum phase transition in superconductors. <i>Physical Review B</i> , 2008 , 77,	3.3	75
316	Higher Dimensional Realizations of Activated Dynamic Scaling at Random Quantum Transitions. <i>Physical Review Letters</i> , 1996 , 77, 5292-5295	7.4	75
315	Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 9463-8	11.5	75
314	Phase ordering kinetics of the Bose gas. <i>Physical Review A</i> , 1996 , 54, 5037-5041	2.6	74
313	Memory matrix theory of magnetotransport in strange metals. <i>Physical Review B</i> , 2015 , 91,	3.3	73
312	Quantum criticality of U(1) gauge theories with fermionic and bosonic matter in two spatial dimensions. <i>Physical Review B</i> , 2008 , 77,	3.3	73
311	Universal conductance of nanowires near the superconductor-metal quantum transition. <i>Physical Review Letters</i> , 2004 , 92, 237003	7.4	73
310	The dynamics of quantum criticality revealed by quantum Monte Carlo and holography. <i>Nature Physics</i> , 2014 , 10, 361-366	16.2	72
309	Instabilities near the onset of spin density wave order in metals. New Journal of Physics, 2010, 12, 10500	07 .9	72
308	Competition between spin density wave order and superconductivity in the underdoped cuprates. <i>Physical Review B</i> , 2009 , 80,	3.3	72
307	Where is the quantum critical point in the cuprate superconductors?. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 537-543	1.3	72
306	Coulomb impurity in graphene. <i>Physical Review B</i> , 2007 , 76,	3.3	72
305	Spectral functions of the Higgs mode near two-dimensional quantum critical points. <i>Physical Review B</i> , 2012 , 86,	3.3	71
304	Quantum phases of the Shastry-Sutherland antiferromagnet: Application to SrCu2(BO3)2. <i>Physical Review B</i> , 2001 , 64,	3.3	71
303	NMR relaxation in half-integer antiferromagnetic spin chains. <i>Physical Review B</i> , 1994 , 50, 13006-13008	3.3	71
302	Transport near the Ising-nematic quantum critical point of metals in two dimensions. <i>Physical Review B</i> , 2014 , 89,	3.3	68
301	Spontaneous alignment of frustrated bonds in an anisotropic, three-dimensional Ising model. <i>Physical Review B</i> , 1991 , 44, 686-690	3.3	68
300	Spin-Peierls ground states of the quantum dimer model: A finite-size study. <i>Physical Review B</i> , 1989 , 40, 5204-5207	3.3	68

(2009-2014)

299	Density wave instabilities in a correlated two-dimensional metal. <i>Physical Review B</i> , 2014 , 90,	3.3	67
298	Stable hc/e vortices in a gauge theory of superconductivity in strongly correlated systems. <i>Physical Review B</i> , 1992 , 45, 389-399	3.3	67
297	From stripe to checkerboard ordering of charge-density waves on the square lattice in the presence of quenched disorder. <i>Physical Review B</i> , 2006 , 74,	3.3	65
296	Notes on the complex Sachdev-Ye-Kitaev model. <i>Journal of High Energy Physics</i> , 2020 , 2020, 1	5.4	64
295	Absence of Disorder-Driven Metal-Insulator Transitions in Simple Holographic Models. <i>Physical Review Letters</i> , 2015 , 115, 221601	7.4	64
294	Holographic quantum critical transport without self-duality. <i>Physical Review D</i> , 2011 , 83,	4.9	62
293	Bond-operator theory of doped antiferromagnets: From Mott insulators with bond-centered charge order to superconductors with nodal fermions. <i>Physical Review B</i> , 2001 , 64,	3.3	62
292	Condensed Matter and AdS/CFT. Lecture Notes in Physics, 2011, 273-311	0.8	62
291	Dicke-model quantum spin and photon glass in optical cavities: Nonequilibrium theory and experimental signatures. <i>Physical Review A</i> , 2013 , 87,	2.6	61
290	Quantum phase transitions and conserved charges. <i>European Physical Journal B</i> , 1994 , 94, 469-479	1.2	61
289	Polylogarithm identities in a conformal field theory in three dimensions. <i>Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics</i> , 1993 , 309, 285-288	4.2	61
288	Incommensurate icosahedral density waves in rapidly cooled metals. <i>Physical Review B</i> , 1985 , 32, 689-6	9 5 .3	61
287	Quantum quench of the Sachdev-Ye-Kitaev model. <i>Physical Review B</i> , 2017 , 96,	3.3	60
286	Black hole determinants and quasinormal modes. Classical and Quantum Gravity, 2010, 27, 125001	3.3	60
285	Effective theory of Fermi pockets in fluctuating antiferromagnets. <i>Physical Review B</i> , 2010 , 81,	3.3	60
284	Quantum field theory of metallic spin glasses. <i>Physical Review B</i> , 1995 , 52, 10286-10294	3.3	60
283	Fluctuating spin density waves in metals. <i>Physical Review B</i> , 2009 , 80,	3.3	59
282	Dynamics and transport of the Z2 spin liquid: application to kappa-(ET)2Cu2(CN)3. <i>Physical Review Letters</i> , 2009 , 102, 176401	7.4	58

281	Quantum critical response at the onset of spin-density-wave order in two-dimensional metals. <i>Physical Review B</i> , 2011 , 84,	3.3	58
280	Connecting high-field quantum oscillations to zero-field electron spectral functions in the underdoped cuprates. <i>Nature Communications</i> , 2014 , 5, 5771	17.4	57
279	Entanglement entropy of 3-d conformal gauge theories with many flavors. <i>Journal of High Energy Physics</i> , 2012 , 2012, 1	5.4	57
278	Nonzero-temperature transport near fractional quantum Hall critical points. <i>Physical Review B</i> , 1998 , 57, 7157-7173	3.3	57
277	Pinning of dynamic spin-density-wave fluctuations in cuprate superconductors. <i>Physical Review B</i> , 2002 , 65,	3.3	56
276	Coulomb Interactions at Quantum Hall Critical Points of Systems in a Periodic Potential. <i>Physical Review Letters</i> , 1998 , 80, 5409-5412	7.4	54
275	Finite temperature correlations in the one-dimensional quantum Ising model. <i>Nuclear Physics B</i> , 1996 , 482, 579-612	2.8	54
274	Quantum oscillations and black hole ringing. <i>Physical Review D</i> , 2009 , 80,	4.9	53
273	Vison states and confinement transitions of Z2 spin liquids on the kagome lattice. <i>Physical Review B</i> , 2011 , 84,	3.3	53
272	Density-wave instabilities of fractionalized Fermi liquids. <i>Physical Review B</i> , 2014 , 90,	3.3	52
271	Strange metals and the AdS/CFT correspondence. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2010 , 2010, P11022	1.9	52
270	Magnetotransport in a Model of a Disordered Strange Metal. <i>Physical Review X</i> , 2018 , 8,	9.1	52
269	Thermal diffusivity and chaos in metals without quasiparticles. <i>Physical Review D</i> , 2017 , 96,	4.9	51
268	Conformal field theories at nonzero temperature: Operator product expansions, Monte Carlo, and holography. <i>Physical Review B</i> , 2014 , 90,	3.3	51
267	RENORMALIZATION GROUP ANALYSIS OF QUANTUM CRITICAL POINTS IN d-WAVE SUPERCONDUCTORS. <i>International Journal of Modern Physics B</i> , 2000 , 14, 3719-3734	1.1	51
266	Quantum dimer model for the pseudogap metal. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9552-7	11.5	50
265	Zero Temperature Phase Transitions in Quantum Heisenberg Ferromagnets. <i>Annals of Physics</i> , 1996 , 251, 76-122	2.5	49
264	Depletion of the Bose-Einstein condensate in Bose-Fermi mixtures. <i>Physical Review B</i> , 2005 , 72,	3.3	48

263	Magnetic field-induced pair density wave state in the cuprate vortex halo. Science, 2019, 364, 976-980	33.3	47	
262	Mean-field theory of competing orders in metals with antiferromagnetic exchange interactions. <i>Physical Review B</i> , 2014 , 89,	3.3	47	
261	Non-Fermi-liquid behavior from two-dimensional antiferromagnetic fluctuations: A renormalization-group and large-N analysis. <i>Physical Review B</i> , 2004 , 69,	3.3	47	
260	Evolution of Quantum Fluctuations Near the Quantum Critical Point of the Transverse Field Ising Chain System CoNb2O6. <i>Physical Review X</i> , 2014 , 4,	9.1	46	
259	Quasiparticle Nernst effect in stripe-ordered cuprates. <i>Physical Review B</i> , 2010 , 81,	3.3	46	
258	Confinement transition of Z gauge theories coupled to massless fermions: Emergent quantum chromodynamics and (5) symmetry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E6987-E6995	11.5	45	
257	Theory of a Planckian Metal. <i>Physical Review Letters</i> , 2019 , 123, 066601	7.4	45	
256	Competing orders in thermally fluctuating superconductors in two dimensions. <i>Physical Review B</i> , 2004 , 69,	3.3	45	
255	Feedback of superconducting fluctuations on charge order in the underdoped cuprates. <i>Physical Review B</i> , 2014 , 90,	3.3	44	
254	Hole dynamics in an antiferromagnet across a deconfined quantum critical point. <i>Physical Review B</i> , 2007 , 75,	3.3	44	
253	Phase transition of a Bose gas in a harmonic potential. <i>Europhysics Letters</i> , 1996 , 36, 7-12	1.6	44	
252	Crystalline and fluid order on a random topography. <i>Journal of Physics C: Solid State Physics</i> , 1984 , 17, 5473-5489		44	
251	Quantum criticality of the kagome antiferromagnet with Dzyaloshinskii-Moriya interactions. <i>Physical Review B</i> , 2010 , 81,	3.3	43	
250	Superconductivity. Tuning order in cuprate superconductors. <i>Science</i> , 2002 , 295, 452-4	33.3	43	
249	dc resistivity at the onset of spin density wave order in two-dimensional metals. <i>Physical Review B</i> , 2014 , 90,	3.3	42	
248	Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder. <i>Physical Review D</i> , 2014 , 89,	4.9	42	
247	Quasinormal modes of quantum criticality. <i>Physical Review B</i> , 2012 , 86,	3.3	42	
246	Quantum charge glasses of itinerant fermions with cavity-mediated long-range interactions. <i>Physical Review A</i> , 2012 , 86,	2.6	42	

245	Scaling and crossover functions for the conductance in the directed network model of edge states. <i>Physical Review B</i> , 1997 , 55, 10593-10601	3.3	42
244	Putting competing orders in their place near the Mott transition. II. The doped quantum dimer model. <i>Physical Review B</i> , 2005 , 71,	3.3	42
243	Destruction of NBI order in the cuprates by electron doping. <i>Physical Review B</i> , 2008 , 78,	3.3	41
242	Universal relaxational dynamics of gapped one-dimensional models in the quantum sine-Gordon universality class. <i>Physical Review Letters</i> , 2005 , 95, 187201	7.4	41
241	Topological order in the pseudogap metal. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E3665-E3672	11.5	40
240	Deconfined Criticality Critically Defined. Journal of the Physical Society of Japan, 2005, 74, 1-9	1.5	40
239	Quantum critical behavior in a two-layer antiferromagnet. <i>Physical Review B</i> , 1995 , 51, 16483-16486	3.3	40
238	Gauge theory for the cuprates near optimal doping. <i>Physical Review B</i> , 2019 , 99,	3.3	39
237	Multipoint correlators of conformal field theories: Implications for quantum critical transport. <i>Physical Review B</i> , 2013 , 87,	3.3	39
236	Quantum impurity in an antiferromagnet: Nonlinear sigma model theory. <i>Physical Review B</i> , 2003 , 68,	3.3	39
235	Universal low temperature theory of charged black holes with AdS2 horizons. <i>Journal of Mathematical Physics</i> , 2019 , 60, 052303	1.2	38
234	Low-temperature broken-symmetry phases of spiral antiferromagnets. <i>Physical Review Letters</i> , 2004 , 93, 257206	7.4	38
233	Pseudogap and Fermi-Surface Topology in the Two-Dimensional Hubbard Model. <i>Physical Review X</i> , 2018 , 8,	9.1	38
232	Fermi Surface Reconstruction and Drop in the Hall Number due to Spiral Antiferromagnetism in High-T_{c} Cuprates. <i>Physical Review Letters</i> , 2016 , 117, 187001	7.4	37
231	Fermi surfaces and gauge-gravity duality. <i>Physical Review D</i> , 2011 , 84,	4.9	37
230	Theory of quantum impurities in spin liquids. <i>Physical Review B</i> , 2006 , 74,	3.3	37
229	Superfluid-insulator transitions of the fermi gas with near-unitary interactions in a periodic potential. <i>Physical Review Letters</i> , 2007 , 99, 230403	7.4	37
228	Quantum phase transitions out of the heavy Fermi liquid. <i>Physica B: Condensed Matter</i> , 2005 , 359-361, 9-16	2.8	37

(1998-2020)

227	Ultraheavy and Ultrarelativistic Dirac Quasiparticles in Sandwiched Graphenes. <i>Nano Letters</i> , 2020 , 20, 3030-3038	11.5	36
226	Radio-frequency spectroscopy of a strongly imbalanced Feshbach-resonant Fermi gas. <i>Physical Review A</i> , 2008 , 78,	2.6	36
225	Experimental observables near a nematic quantum critical point in the pnictide and cuprate superconductors. <i>Physical Review B</i> , 2008 , 78,	3.3	36
224	Comment on Bpin Transport Properties of the Quantum One-Dimensional Non-Linear Sigma Model[]Journal of the Physical Society of Japan, 2000 , 69, 2712-2713	1.5	36
223	Scaling dimensions of monopole operators in the (mathbb{C}{mathrm{mathbb{P}}}^{N_b-1}) theory in 2 + 1 dimensions. <i>Journal of High Energy Physics</i> , 2015 , 2015, 1	5.4	35
222	Model of a Fermi liquid using gauge-gravity duality. <i>Physical Review D</i> , 2011 , 84,	4.9	35
221	SU(2)-invariant spin liquids on the triangular lattice with spinful Majorana excitations. <i>Physical Review B</i> , 2011 , 83,	3.3	35
220	EFFECTIVE LATTICE MODELS FOR TWO-DIMENSIONAL QUANTUM ANTIFERROMAGNETS. <i>Modern Physics Letters B</i> , 1990 , 04, 1043-1052	1.6	35
219	Quantum criticality and black holes. Journal of Physics Condensed Matter, 2009, 21, 164216	1.8	34
218	Fermi surface reconstruction in hole-doped tll models without long-range antiferromagnetic order. <i>Physical Review B</i> , 2012 , 85,	3.3	34
217	Local moments near the metal-insulator transition. <i>Physical Review B</i> , 1989 , 39, 5297-5310	3.3	34
216	Sine-Gordon theory of the non-NEI phase of two-dimensional quantum antiferromagnets. <i>Physical Review B</i> , 1989 , 40, 2704-2707	3.3	33
215	Numerical study of the chiral Z3 quantum phase transition in one spatial dimension. <i>Physical Review A</i> , 2018 , 98,	2.6	32
214	Paired electron pockets in the hole-doped cuprates. <i>Physical Review B</i> , 2009 , 79,	3.3	32
213	Absence of U(1) spin liquids in two dimensions. <i>Physical Review B</i> , 2003 , 68,	3.3	32
212	Spin-Peierls States of Quantum Antiferromagnets on the CaV4O9 Lattice. <i>Physical Review Letters</i> , 1996 , 77, 4800-4803	7.4	32
211	Correlated phases of bosons in tilted frustrated lattices. <i>Physical Review B</i> , 2011 , 83,	3.3	31
210	Universal Critical Temperature for Kosterlitz-Thouless Transitions in Bilayer Quantum Magnets. <i>Physical Review Letters</i> , 1998 , 81, 5418-5421	7.4	31

209	Quantum critical point shifts under superconductivity: Pnictides and cuprates. <i>Physical Review B</i> , 2010 , 82,	3.3	30
208	Strongly coupled quantum criticality with a Fermi surface in two dimensions: Fractionalization of spin and charge collective modes. <i>Physical Review B</i> , 2002 , 66,	3.3	30
207	Universal, finite-temperature, crossover functions of the quantum transition in the Ising chain in a transverse field. <i>Nuclear Physics B</i> , 1996 , 464, 576-595	2.8	30
206	Holography of the Dirac Fluid in Graphene with Two Currents. <i>Physical Review Letters</i> , 2017 , 118, 03660	17.4	29
205	Insulator-metal transition on the triangular lattice. <i>Physical Review B</i> , 2008 , 77,	3.3	29
204	Entanglement entropy of large-N Wilson-Fisher conformal field theory. <i>Physical Review B</i> , 2017 , 95,	3.3	28
203	The novel metallic states of the cuprates: Topological Fermi liquids and strange metals. <i>Progress of Theoretical and Experimental Physics</i> , 2016 , 2016, 12C102	5.4	28
202	Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra: A Window into the Operator Content of Higher-Dimensional Conformal Field Theories. <i>Physical Review Letters</i> , 2016 , 117, 210401	7.4	28
201	Singularity of the London penetration depth at quantum critical points in superconductors. <i>Physical Review Letters</i> , 2013 , 111, 157004	7.4	28
200	Fermi surfaces and Luttinger theorem in paired fermion systems. <i>Physical Review B</i> , 2006 , 73,	3.3	28
199	Quantum phase transitions of correlated electrons in two dimensions. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2002 , 313, 252-283	3.3	28
198	Understanding correlated electron systems by a classification of Mott insulators. <i>Annals of Physics</i> , 2003 , 303, 226-246	2.5	28
197	Quantum phases of the Shraiman-Siggia model. <i>Physical Review B</i> , 1994 , 49, 6770-6778	3.3	28
196	Probing topological spin liquids on a programmable quantum simulator. <i>Science</i> , 2021 , 374, 1242-1247	33.3	28
195	Conductivity of weakly disordered strange metals: From conformal to hyperscaling-violating regimes. <i>Nuclear Physics B</i> , 2015 , 892, 239-268	2.8	27
194	Conformal field theories in a periodic potential: Results from holography and field theory. <i>Physical Review D</i> , 2014 , 89,	4.9	27
193	Valence bond solid order near impurities in two-dimensional quantum antiferromagnets. <i>Physical Review B</i> , 2008 , 77,	3.3	27
192	Infinite randomness fixed point of the superconductor-metal quantum phase transition. <i>Physical Review Letters</i> , 2008 , 101, 035701	7.4	27

(2002-2001)

191	Spin orthogonality catastrophe in two-dimensional antiferromagnets and superconductors. <i>Physical Review Letters</i> , 2001 , 86, 2617-20	7.4	27	
190	Higgs criticality in a two-dimensional metal. <i>Physical Review B</i> , 2015 , 91,	3.3	26	
189	Superconductivity, correlated insulators, and Wess-Zumino-Witten terms in twisted bilayer graphene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 29543-29554	11.5	26	
188	Dispersing quasinormal modes in (2+1)-dimensional conformal field theories. <i>Physical Review B</i> , 2013 , 87,	3.3	26	
187	Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 294205	1.8	26	
186	Magnetic properties of strongly disordered electronic systems. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 1998 , 356, 173-195	3	26	
185	Hyperscaling violation at the Ising-nematic quantum critical point in two-dimensional metals. <i>Physical Review B</i> , 2016 , 94,	3.3	25	
184	Majorana liquids: the complete fractionalization of the electron. <i>Physical Review Letters</i> , 2010 , 105, 05	72 , 0.4	25	
183	Impurity induced spin texture in quantum critical 2D antiferromagnets. <i>Physical Review Letters</i> , 2007 , 98, 087203	7.4	25	
182	Quantum Spin Chains with Site Dissipation. <i>Journal of the Physical Society of Japan</i> , 2005 , 74, 67-70	1.5	25	
181	Intertwining Topological Order and Broken Symmetry in a Theory of Fluctuating Spin-Density Waves. <i>Physical Review Letters</i> , 2017 , 119, 227002	7.4	24	
180	Hyperscaling at the spin density wave quantum critical point in two-dimensional metals. <i>Physical Review B</i> , 2015 , 92,	3.3	24	
179	Universal thermal and electrical transport near the superconductor-metal quantum phase transition in nanowires. <i>Physical Review B</i> , 2008 , 77,	3.3	24	
178	Planar pyrochlore antiferromagnet: A large-N analysis. <i>Physical Review B</i> , 2004 , 69,	3.3	24	
177	Viscous relaxation in metallic glasses. <i>Physical Review B</i> , 1986 , 33, 6395-6404	3.3	24	
176	Competition between superconductivity and nematic order: Anisotropy of superconducting coherence length. <i>Physical Review B</i> , 2012 , 85,	3.3	23	
175	Physics. Entangling superconductivity and antiferromagnetism. <i>Science</i> , 2012 , 336, 1510-1	33.3	23	
174	Tunneling gap of laterally separated quantum Hall systems. <i>Physical Review B</i> , 2002 , 65,	3.3	23	

173	Charge ordering in three-band models of the cuprates. <i>Physical Review B</i> , 2015 , 91,	3.3	22
172	Nernst effect in the electron-doped cuprate superconductors. <i>Physical Review B</i> , 2009 , 79,	3.3	22
171	Magnon decay in gapped quantum spin systems. <i>Physical Review Letters</i> , 2006 , 96, 087203	7.4	22
170	Effective action for vortex dynamics in clean d-wave superconductors. <i>Physical Review B</i> , 2006 , 73,	3.3	22
169	Intermediate-temperature dynamics of one-dimensional Heisenberg antiferromagnets. <i>Physical Review B</i> , 1999 , 59, 9285-9303	3.3	22
168	Universal behavior of the spin-echo decay rate in La2CuO4. <i>Physical Review B</i> , 1994 , 49, 9052-9056	3.3	22
167	Complex Density Wave Orders and Quantum Phase Transitions in a Model of Square-Lattice Rydberg Atom Arrays. <i>Physical Review Letters</i> , 2020 , 124, 103601	7.4	21
166	Conserved current correlators of conformal field theories in 2+1 dimensions. <i>Physical Review B</i> , 2013 , 88,	3.3	21
165	Monopoles in 2 + 1-dimensional conformal field theories with global U(1) symmetry. <i>Journal of High Energy Physics</i> , 2013 , 2013, 1	5.4	20
164	Quantum criticality of reconstructing Fermi surfaces in antiferromagnetic metals. <i>Physical Review B</i> , 2013 , 87,	3.3	20
163	Publisher Note: Supersymmetric Sachdev-Ye-Kitaev models [Phys. Rev. D 95, 026009 (2017)]. <i>Physical Review D</i> , 2017 , 95,	4.9	20
162	Square-lattice algebraic spin liquid with SO(5) symmetry. <i>Physical Review Letters</i> , 2008 , 100, 137201	7.4	20
161	Nodal quasiparticles and the onset of spin-density-wave order in cuprate superconductors. <i>Physical Review Letters</i> , 2008 , 101, 027005	7.4	20
160	Quantum criticality of a Fermi gas with a spherical dispersion minimum. <i>Physical Review Letters</i> , 2006 , 96, 187001	7.4	20
159	Multicritical crossovers near the dilute bose gas quantum critical point. <i>Physical Review Letters</i> , 1996 , 76, 4412-4415	7.4	20
158	Quantum field theory for the chiral clock transition in one spatial dimension. <i>Physical Review B</i> , 2018 , 98,	3.3	20
157	Spin density wave order, topological order, and Fermi surface reconstruction. <i>Physical Review B</i> , 2016 , 94,	3.3	19
156	Transport and chaos in lattice Sachdev-Ye-Kitaev models. <i>Physical Review B</i> , 2019 , 100,	3.3	19

(1991-2008)

155	Imaging bond order near nonmagnetic impurities in square-lattice antiferromagnets. <i>Physical Review Letters</i> , 2008 , 101, 187206	7.4	19
154	Superconductivity of itinerant electrons coupled to spin chains. <i>Physical Review B</i> , 1988 , 38, 826-829	3.3	19
153	Fractionalized Fermi liquid with bosonic chargons as a candidate for the pseudogap metal. <i>Physical Review B</i> , 2016 , 94,	3.3	18
152	Insulators and metals with topological order and discrete symmetry breaking. <i>Physical Review B</i> , 2017 , 95,	3.3	18
151	Strange metals in one spatial dimension. <i>Physical Review D</i> , 2012 , 86,	4.9	18
150	Breakdown of Fermi liquid behavior at the (III=2kF spin-density wave quantum-critical point: The case of electron-doped cuprates. <i>Physical Review B</i> , 2012 , 86,	3.3	18
149	Metallic spin glasses. <i>Journal of Physics Condensed Matter</i> , 1996 , 8, 9723-9741	1.8	18
148	Quantum critical dynamics of the two-dimensional Bose gas. <i>Physical Review B</i> , 2006 , 73,	3.3	18
147	Static hole in a critical antiferromagnet: field-theoretic renormalization group. <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 357-360, 78-81	1.3	18
146	Chubukov and Sachdev reply. <i>Physical Review Letters</i> , 1993 , 71, 3615	7.4	18
145	Pairing in two dimensions: A systematic approach. <i>Physical Review B</i> , 1991 , 43, 10229-10235	3.3	18
144	Quantum phases of Rydberg atoms on a kagome lattice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	18
143	Quantum quenches and competing orders. <i>Physical Review B</i> , 2014 , 90,	3.3	17
142	Probing excitations in insulators via injection of spin currents. <i>Physical Review B</i> , 2015 , 92,	3.3	17
141	Fluctuating orders and quenched randomness in the cuprates. <i>Physical Review B</i> , 2015 , 92,	3.3	17
140	Geometric phases and competing orders in two dimensions. <i>Physical Review B</i> , 2011 , 83,	3.3	17
139	Competing Orders and Non-Landau-Ginzburg-Wilson Criticality in (Bose) Mott Transitions. <i>Progress of Theoretical Physics Supplement</i> , 2005 , 160, 314-336		17
138	Superconducting, metallic, and insulating phases in a model of CuO2 layers. <i>Physical Review B</i> , 1991 , 44, 10173-10189	3.3	17

137	Enhanced thermal Hall effect in the square-lattice NBI state. <i>Nature Physics</i> , 2019 , 15, 1290-1294	16.2	16
136	Fractionalized Fermi liquid on the surface of a topological Kondo insulator. <i>Physical Review B</i> , 2016 , 93,	3.3	16
135	Quantum electrodynamics in 2+1 dimensions with quenched disorder: Quantum critical states with interactions and disorder. <i>Physical Review B</i> , 2017 , 95,	3.3	16
134	Signatures of the nematic ordering transitions in the thermal conductivity of d-wave superconductors. <i>Physical Review B</i> , 2009 , 80,	3.3	16
133	Underdoped cuprates as fractionalized Fermi liquids: Transition to superconductivity. <i>Physical Review B</i> , 2011 , 83,	3.3	16
132	Conductance and its universal fluctuations in the directed network model at the crossover to the quasi-one-dimensional regime. <i>Physical Review B</i> , 1997 , 56, 13218-13226	3.3	16
131	Dual vortex theory of doped Mott insulators. <i>Annals of Physics</i> , 2007 , 322, 2635-2664	2.5	16
130	Spin collective mode and quasiparticle contributions to STM spectra of d-wave superconductors with pinning. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 388-389, 19-24	1.3	16
129	Universal low-temperature properties of quantum and classical ferromagnetic chains. <i>Physical Review B</i> , 1996 , 54, R744-R747	3.3	16
128	Large-N limit of the square-lattice t-J model at (1/4 and other filling fractions. <i>Physical Review B</i> , 1990 , 41, 4502-4506	3.3	16
127	Thermal Hall effect in square-lattice spin liquids: A Schwinger boson mean-field study. <i>Physical Review B</i> , 2019 , 99,	3.3	15
126	Fermionic Spinon Theory of Square Lattice Spin Liquids near the Nël State. <i>Physical Review X</i> , 2018 , 8,	9.1	15
125	Emergent gauge fields and the high-temperature superconductors. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	15
124	Confinement transition to density wave order in metallic doped spin liquids. <i>Physical Review B</i> , 2016 , 93,	3.3	15
123	Wess-Zumino-Witten Terms in Graphene Landau Levels. <i>Physical Review Letters</i> , 2015 , 114, 226801	7.4	15
122	Theory of the pairbreaking superconductorfhetal transition in nanowires. <i>Annals of Physics</i> , 2009 , 324, 523-583	2.5	15
121	Nematic order in the vicinity of a vortex in superconducting FeSe. <i>Physical Review B</i> , 2011 , 84,	3.3	15
120	Compressible quantum phases from conformal field theories in 2+1 dimensions. <i>Physical Review D</i> , 2012 , 86,	4.9	15

(2019-2010)

Quantum criticality and the phase diagram of the cuprates. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S4-S6	1.3	15	
Orbital currents in insulating and doped antiferromagnets. <i>Physical Review B</i> , 2018 , 98,	3.3	15	
Thermoelectric power of Sachdev-Ye-Kitaev islands: Probing Bekenstein-Hawking entropy in quantum matter experiments. <i>Physical Review B</i> , 2020 , 101,	3.3	14	
Transition from the Z2 spin liquid to antiferromagnetic order: Spectrum on the torus. <i>Physical Review B</i> , 2016 , 94,	3.3	14	
Auxiliary-boson and DMFT studies of bond ordering instabilities of (t)-(J)-(V) models on the square lattice. <i>Indian Journal of Physics</i> , 2014 , 88, 905-913	1.4	14	
Thermoelectric transport near pair breaking quantum phase transition out of d-wave superconductivity. <i>Physical Review B</i> , 2007 , 75,	3.3	14	
Quantum phase transitions beyond the Landaullinzburg paradigm and supersymmetry. <i>Annals of Physics</i> , 2010 , 325, 2-15	2.5	13	
Theory of NBI and valence-bond solid phases on the kagome lattice of Zn paratacamite. <i>Physical Review Letters</i> , 2008 , 100, 187201	7.4	13	
Quantum phase transitions in antiferromagnets and superfluids. <i>Physica B: Condensed Matter</i> , 2000 , 280, 333-340	2.8	13	
Electron-spin resonance in insulating doped semiconductors. <i>Physical Review B</i> , 1986 , 34, 4898-4901	3.3	13	
Electron spin resonance in disordered metals. <i>Physical Review B</i> , 1986 , 34, 6049-6052	3.3	13	
Linear in temperature resistivity in the limit of zero temperature from the time reparameterization soft mode. <i>Annals of Physics</i> , 2020 , 418, 168202	2.5	13	
Thermal and electrical transport in metals and superconductors across antiferromagnetic and topological quantum transitions. <i>Physical Review B</i> , 2017 , 96,	3.3	12	
Spectral function of a localized fermion coupled to the Wilson-Fisher conformal field theory. <i>Physical Review B</i> , 2014 , 90,	3.3	12	
Phenomenological lattice model for dynamic spin and charge fluctuations in the cuprates. <i>Journal of Physics and Chemistry of Solids</i> , 2006 , 67, 11-15	3.9	12	
Spin glasses enter the quantum regime. <i>Physics World</i> , 1994 , 7, 25-27	0.5	12	
Superconductivity from a confinement transition out of a fractionalized Fermi liquid with Z2 topological and Ising-nematic orders. <i>Physical Review B</i> , 2016 , 94,	3.3	12	
Signatures of a Deconfined Phase Transition on the Shastry-Sutherland Lattice: Applications to Quantum Critical SrCu2(BO3)2. <i>Physical Review X</i> , 2019 , 9,	9.1	12	
	Applications, 2010, 470, S4-S6 Orbital currents in insulating and doped antiferromagnets. Physical Review B, 2018, 98, Thermoelectric power of Sachdev-Ye-Kitaev islands: Probing Bekenstein-Hawking entropy in quantum matter experiments. Physical Review B, 2020, 101, Transition from the Z2 spin liquid to antiferromagnetic order: Spectrum on the torus. Physical Review B, 2016, 94, Auxiliary-boson and DMFT studies of bond ordering instabilities of (t)-(J)-(V) models on the square lattice. Indian Journal of Physics, 2014, 88, 905-913 Thermoelectric transport near pair breaking quantum phase transition out of d-wave superconductivity. Physical Review B, 2007, 75. Quantum phase transitions beyond the LandauBinzburg paradigm and supersymmetry. Annals of Physics, 2010, 325, 2-15 Theory of NBI and valence-bond solid phases on the kagome lattice of Zn paratacamite. Physical Review Letters, 2008, 100, 187201 Quantum phase transitions in antiferromagnets and superfluids. Physica B: Condensed Matter, 2000, 280, 333-340 Electron-spin resonance in insulating doped semiconductors. Physical Review B, 1986, 34, 4898-4901 Electron spin resonance in disordered metals. Physical Review B, 1986, 34, 6049-6052 Linear in temperature resistivity in the limit of zero temperature from the time reparameterization soft mode. Annals of Physics, 2020, 418, 168202 Thermal and electrical transport in metals and superconductors across antiferromagnetic and topological quantum transitions. Physical Review B, 2017, 96, Spectral function of a localized fermion coupled to the Wilson-Fisher conformal field theory. Physical Review B, 2014, 90, Phenomenological lattice model for dynamic spin and charge fluctuations in the cuprates. Journal of Physics and Chemistry of Solids, 2006, 67, 11-15 Spin glasses enter the quantum regime. Physical Review B, 2016, 94, Signatures of a Deconfined Phase Transition on the Shastry-Sutherland Lattice: Applications to	Applications, 2010, 470, 54-56 Orbital currents in insulating and doped antiferromagnets, Physical Review B, 2018, 98, Thermoelectric power of Sachdev-Ye-Kitaev Islands: Probing Bekenstein-Hawking entropy in quantum matter experiments. Physical Review B, 2020, 101, Transition from the ZZ spin liquid to antiferromagnetic order: Spectrum on the torus. Physical Review B, 2016, 94, Auxiliary-boson and DMFT studies of bond ordering instabilities of (t)-(J)-(V) models on the square lattice. Indian Journal of Physics, 2014, 88, 905-913 Thermoelectric transport near pair breaking quantum phase transition out of d-wave superconductivity. Physical Review B, 2007, 75, Quantum phase transitions beyond the Landautinzburg paradigm and supersymmetry. Annals of Physics, 2010, 325, 2-15 Theory of NBI and valence-bond solid phases on the kagome lattice of Zn paratacamite. Physical Review Letters, 2008, 100, 187201 Quantum phase transitions in antiferromagnets and superfluids. Physica B: Condensed Matter, 2000, 280, 333-340 Electron-spin resonance in insulating doped semiconductors. Physical Review B, 1986, 34, 4898-4901 Linear in temperature resistivity in the limit of zero temperature from the time reparameterization soft mode. Annals of Physics, 2020, 418, 168202 Thermal and electrical transport in metals and superconductors across antiferromagnetic and topological quantum transitions. Physical Review B, 2017, 96. Spectral function of a localized fermion coupled to the Wilson-Fisher conformal field theory. Physical Review B, 2014, 90, Phenomenological lattice model for dynamic spin and charge fluctuations in the cuprates. Journal of Physics and Chemistry of Solids, 2006, 67, 11-15 Spin glasses enter the quantum regime. Physical Review B, 2016, 94, Signatures of a Deconfined Phase Transition on the Shastry-Sutherland Lattice: Applications to	Applications, 2010, 470, 54-56 Orbital currents in insulating and doped antiferromagnets. Physical Review B, 2018, 98, Thermoelectric power of Sachdev-Ye-Kitaev islands: Probing Bekenstein-Hawking entropy in quantum matter experiments. Physical Review B, 2020, 101, Transition from the 22 spin liquid to antiferromagnetic order: Spectrum on the torus. Physical Review B, 2016, 94, Auxillary-boson and DMFT studies of bond ordering instabilities of (t)-(J)-(V) models on the square lattice. Indian Journal of Physics, 2014, 88, 905-913 Thermoelectric transport near pair breaking quantum phase transition out of d-wave superconductivity. Physical Review B, 2007, 75, Quantum phase transitions beyond the LandauGinzburg paradigm and supersymmetry. Annals of Physics, 2010, 325, 2-15 Theory of NBi and valence-bond solid phases on the kagome lattice of Zn paratacamite. Physical Review Letters, 2008, 100, 187201 Quantum phase transitions in antiferromagnets and superfluids. Physica B: Condensed Matter, 2000, 280, 333-340 Electron-spin resonance in insulating doped semiconductors. Physical Review B, 1986, 34, 4898-4901 Linear in temperature resistivity in the limit of zero temperature from the time reparameterization soft mode. Annals of Physics, 2020, 418, 168202 Thermal and electrical transport in metals and superconductors across antiferromagnetic and topological quantum transitions. Physical Review B, 2017, 96, Spectral function of a localized fermion coupled to the Wilson-Fisher conformal field theory. Physical Review B, 2014, 90, Phenomenological lattice model for dynamic spin and charge fluctuations in the cuprates. Journal of Physics and Chemistry of Solids, 2006, 67, 11-15 Spin glasses enter the quantum regime. Physical Review B, 2016, 94, Signatures of a Deconfined Phase Transition on the Shastry-Sutherland Lattice: Applications to

101	Critical strange metal from fluctuating gauge fields in a solvable random model. <i>Physical Review B</i> , 2018 , 98,	3.3	12
100	Phase transition beneath the superconducting dome in BaFe2(As1\(\text{NP} \) Physical Review B, 2015 , 92,	3.3	11
99	Bond and Nel order and fractionalization in ground states of easy-plane antiferromagnets in two dimensions. <i>Physical Review B</i> , 2002 , 65,	3.3	11
98	Charge- and spin-density-wave ordering transitions in strongly correlated metals. <i>Physical Review B</i> , 1995 , 52, 9520-9527	3.3	11
97	Shear viscosity at the Ising-nematic quantum critical point in two-dimensional metals. <i>Physical Review B</i> , 2017 , 95,	3.3	10
96	Deconfined Critical Point in a Doped Random Quantum Heisenberg Magnet. <i>Physical Review X</i> , 2020 , 10,	9.1	10
95	Spectrum of the Wilson-Fisher conformal field theory on the torus. <i>Physical Review B</i> , 2017 , 96,	3.3	10
94	Frustrated quantum Ising spins simulated by spinless bosons in a tilted lattice: From a quantum liquid to antiferromagnetic order. <i>Physical Review B</i> , 2012 , 86,	3.3	10
93	Edge and impurity response in two-dimensional quantum antiferromagnets. <i>Physical Review B</i> , 2008 , 78,	3.3	10
92	Quantum phases and phase transitions of Mott insulators. <i>Lecture Notes in Physics</i> , 2004 , 381-432	0.8	10
91	Thermally fluctuating superconductors in two dimensions. <i>Nature</i> , 2000 , 405, 322-5	50.4	10
90	Spin dephasing in disordered semiconductors and metals. <i>Physical Review B</i> , 1987 , 35, 7558-7574	3.3	10
89	From the pseudogap metal to the Fermi liquid using ancilla qubits. <i>Physical Review Research</i> , 2020 , 2,	3.9	10
88	Electronic quasiparticles in the quantum dimer model: Density matrix renormalization group results. <i>Physical Review B</i> , 2016 , 94,	3.3	10
87	Z2 fractionalized phases of a solvable disordered t model. <i>Physical Review B</i> , 2018 , 98,	3.3	10
86	Deconfined criticality in bilayer graphene. <i>Physical Review B</i> , 2014 , 90,	3.3	9
85	The Enigma of the Pseudogap Phase of the Cuprate Superconductors 2015 ,		9
84	Vortex lattices and crystalline geometries. <i>Physical Review D</i> , 2013 , 88,	4.9	9

(2021-2006)

83	Detecting the quantum zero-point motion of vortices in the cuprate superconductors. <i>Annals of Physics</i> , 2006 , 321, 1528-1546	2.5	9
82	Universal Magnetic Properties of La2BrtuO4 at Intermediate Temperatures. <i>Physical Review Letters</i> , 1993 , 71, 2680-2680	7.4	9
81	Excited states and the metal-insulator transition in monovalent systems. <i>Physical Review B</i> , 1986 , 34, 3520-3523	3.3	9
80	Spectrum of conformal gauge theories on a torus. <i>Physical Review B</i> , 2017 , 95,	3.3	8
79	Relativistic magnetotransport in graphene 2009,		8
78	Quantum Hall to insulator transition in the bilayer quantum Hall ferromagnet. <i>Physical Review Letters</i> , 2008 , 101, 226801	7.4	8
77	Impurity spin textures across conventional and deconfined quantum critical points of two-dimensional antiferromagnets. <i>Physical Review B</i> , 2007 , 76,	3.3	8
76	Field theories of paramagnetic Mott insulators. <i>Annales Henri Poincare</i> , 2003 , 4, 637-646	1.2	8
75	Deconfined criticality and ghost Fermi surfaces at the onset of antiferromagnetism in a metal. <i>Physical Review B</i> , 2020 , 102,	3.3	8
74	Orderly disorder in magic-angle twisted trilayer graphene <i>Science</i> , 2022 , 376, 193-199	33.3	8
73	Vector boson excitations near deconfined quantum critical points. <i>Physical Review Letters</i> , 2013 , 111, 166401	7.4	7
72	Optical conductivity of visons in Z2 spin liquids close to a valence bond solid transition on the kagome lattice. <i>Physical Review B</i> , 2013 , 87,	3.3	7
71	Electronic states near a quantum fluctuating point vortex in a d-wave superconductor: Dirac fermion theory. <i>Physical Review B</i> , 2006 , 74,	3.3	7
70	Spin dynamics across the superfluid-insulator transition of spinful bosons. <i>Physical Review A</i> , 2007 , 76,	2.6	7
69	Quantum Impurity in a Magnetic Environment. Journal of Statistical Physics, 2004, 115, 47-56	1.5	7
68	Spin dynamics across the metal-insulator transition. <i>Journal of Applied Physics</i> , 1987 , 61, 4366-4368	2.5	7
67	Magnetic properties across the metal-insulator transition (invited). <i>Journal of Applied Physics</i> , 1988 , 63, 4285-4290	2.5	7

65	NMR relaxation in Ising spin chains. <i>Physical Review B</i> , 2019 , 99,	3.3	6
64	Phases of SU(2) gauge theory with multiple adjoint Higgs fields in 2+1 dimensions. <i>Physical Review B</i> , 2020 , 101,	3.3	6
63	Diamagnetism and density-wave order in the pseudogap regime of YBa2Cu3O6+x. <i>Physical Review B</i> , 2014 , 90,	3.3	6
62	Renormalization group analysis of a fermionic hot-spot model. <i>Physical Review B</i> , 2014 , 90,	3.3	6
61	Entanglement entropy of compressible holographic matter: Loop corrections from bulk fermions. <i>Physical Review B</i> , 2014 , 90,	3.3	6
60	Strange and stringy. <i>Scientific American</i> , 2013 , 308, 44-51	0.5	6
59	Low-temperature quasiparticle transport in a d-wave superconductor with coexisting charge order. <i>Physical Review B</i> , 2009 , 80,	3.3	6
58	Valley fluctuations in degenerately doped semiconductors. <i>Physical Review Letters</i> , 1987 , 58, 2590-259	37.4	6
57	Excitation spectra of quantum matter without quasiparticles. I. Sachdev-Ye-Kitaev models. <i>Physical Review B</i> , 2021 , 103,	3.3	6
56	Gauge theories for the thermal Hall effect. <i>Physical Review B</i> , 2020 , 101,	3.3	5
56 55	Gauge theories for the thermal Hall effect. <i>Physical Review B</i> , 2020 , 101, Real-space Eliashberg approach to charge order of electrons coupled to dynamic antiferromagnetic fluctuations. <i>Physical Review B</i> , 2015 , 92,	3.3	5
	Real-space Eliashberg approach to charge order of electrons coupled to dynamic antiferromagnetic		
55	Real-space Eliashberg approach to charge order of electrons coupled to dynamic antiferromagnetic fluctuations. <i>Physical Review B</i> , 2015 , 92, Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors. <i>Lecture Notes</i>	3.3	
55 54	Real-space Eliashberg approach to charge order of electrons coupled to dynamic antiferromagnetic fluctuations. <i>Physical Review B</i> , 2015 , 92, Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors. <i>Lecture Notes in Physics</i> , 2012 , 1-51 Mobile impurity near the superfluid Mott-insulator quantum critical point in two dimensions.	3·3 o.8	5
555453	Real-space Eliashberg approach to charge order of electrons coupled to dynamic antiferromagnetic fluctuations. <i>Physical Review B</i> , 2015 , 92, Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors. <i>Lecture Notes in Physics</i> , 2012 , 1-51 Mobile impurity near the superfluid Mott-insulator quantum critical point in two dimensions. <i>Physical Review A</i> , 2013 , 87, Excited-state spectra at the superfluid-insulator transition out of paired condensates. <i>Physical</i>	3.3 0.8 2.6	555
55545352	Real-space Eliashberg approach to charge order of electrons coupled to dynamic antiferromagnetic fluctuations. <i>Physical Review B</i> , 2015 , 92, Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors. <i>Lecture Notes in Physics</i> , 2012 , 1-51 Mobile impurity near the superfluid Mott-insulator quantum critical point in two dimensions. <i>Physical Review A</i> , 2013 , 87, Excited-state spectra at the superfluid-insulator transition out of paired condensates. <i>Physical Review A</i> , 2007 , 75, MAGNETIC FIELD TUNING OF CHARGE AND SPIN ORDER IN THE CUPRATE SUPERCONDUCTORS.	3.3 0.8 2.6	5555
5554535251	Real-space Eliashberg approach to charge order of electrons coupled to dynamic antiferromagnetic fluctuations. <i>Physical Review B</i> , 2015 , 92, Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors. <i>Lecture Notes in Physics</i> , 2012 , 1-51 Mobile impurity near the superfluid Mott-insulator quantum critical point in two dimensions. <i>Physical Review A</i> , 2013 , 87, Excited-state spectra at the superfluid-insulator transition out of paired condensates. <i>Physical Review A</i> , 2007 , 75, MAGNETIC FIELD TUNING OF CHARGE AND SPIN ORDER IN THE CUPRATE SUPERCONDUCTORS. <i>International Journal of Modern Physics B</i> , 2002 , 16, 3156-3163	3.3 0.8 2.6 2.6	55555

(1999-2002)

47	Spin and charge order in Mott insulators and d-wave superconductors. <i>Journal of Physics and Chemistry of Solids</i> , 2002 , 63, 2269-2276	3.9	4
46	Landau theory of quantum spin glasses of rotors and Ising spins. <i>Nuclear Physics, Section B, Proceedings Supplements</i> , 1996 , 45, 38-49		4
45	Unquantized thermal Hall effect in quantum spin liquids with spinon Fermi surfaces. <i>Physical Review Research</i> , 2020 , 2,	3.9	4
44	Fermi Surface Reconstruction without Symmetry Breaking. <i>Physical Review X</i> , 2020 , 10,	9.1	4
43	MAGNETIC PROPERTIES OF DISORDERED SYSTEMS NEAR A METAL-INSULATOR TRANSITION. Journal De Physique Colloque, 1988 , 49, C8-1179-C8-1184		4
42	Mirror symmetry breaking in a model insulating cuprate. <i>Nature Physics</i> , 2021 , 17, 777-781	16.2	4
41	Quantum optimization of maximum independent set using Rydberg atom arrays <i>Science</i> , 2022 , 376, eabo6587	33.3	4
40	Metal-insulator transition in a random Hubbard model. <i>Physical Review B</i> , 2020 , 101,	3.3	3
39	Influence of the quantum zero-point motion of a vortex on the electronic spectra of s-wave superconductors. <i>Physical Review B</i> , 2006 , 74,	3.3	3
38	Conductivity of thermally fluctuating superconductors in two dimensions. <i>Physica C:</i> Superconductivity and Its Applications, 2004 , 408-410, 218-221	1.3	3
37	Thermal melting of density waves on the square lattice. <i>Physical Review B</i> , 2005 , 71,	3.3	3
36	Universal amplitude ratios for two-dimensional melting on smooth and periodic substrates. <i>Physical Review B</i> , 1985 , 31, 4476-4482	3.3	3
35	Spectral form factors of clean and random quantum Ising chains. <i>Physical Review E</i> , 2020 , 101, 042136	2.4	2
34	Low energy theory of a single vortex and electronic quasiparticles in a d-wave superconductor. <i>Physica C: Superconductivity and Its Applications</i> , 2007 , 460-462, 256-260	1.3	2
33	FINITE TEMPERATURE DYNAMICS NEAR QUANTUM PHASE TRANSITIONS. <i>International Journal of Modern Physics B</i> , 2003 , 17, 5065-5080	1.1	2
32	Quantum spin-glass transition in the two-dimensional electron gas 2002 , 58, 285-292		2
31	Radiation-induced magnetoresistance oscillations in a 2D electron gas. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2003 , 20, 117-122	3	2
30	Quantum conductors in a plane. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 9983-4	11.5	2

29	QUANTUM ANTIFERROMAGNETS IN TWO DIMENSIONS 1995 ,		2
28	Bilocal quantum criticality. <i>Physical Review Research</i> , 2020 , 2,	3.9	2
27	Deconfined Quantum Critical Points 2010 , 333-343		2
26	ICOSAHEDRAL ORDER IN UNDERCOOLED LIQUIDS AND METALLIC GLASSES 1986 , 28-44		2
25	Anomalous density fluctuations in a random t model. <i>Physical Review B</i> , 2020 , 102,	3.3	2
24	Quantum Phase Transition at Nonzero Doping in a Random t-J Model. <i>Physical Review Letters</i> , 2021 , 126, 136602	7.4	2
23	Bulk and boundary quantum phase transitions in a square Rydberg atom array. <i>Physical Review B</i> , 2022 , 105,	3.3	2
22	de Haas🎚an Alphen oscillations for nonrelativistic fermions coupled to an emergent U(1) gauge field. <i>Physical Review B</i> , 2010 , 82,	3.3	1
21	Finite Temperature Correlations of the Ising Chain in a Transverse Field. <i>International Journal of Modern Physics B</i> , 1997 , 11, 57-67	1.1	1
20	Radiation-induced magnetoresistance oscillations in a 2D electron gas. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2004 , 25, 198-204	3	1
19	Quantum connections. Nature Reviews Physics,	23.6	1
18	Small to large Fermi surface transition in a single-band model using randomly coupled ancillas. <i>Physical Review B</i> , 2021 , 103,	3.3	1
17	Quantum Phase Transitions and Collective Modes in d-Wave Superconductors 2001 , 329-341		1
16	Spin and Charge Order in The Vortex Lattice of The Cuprates: Experiment and Theory 2003 , 171-186		O
15	Deconfined Quantum Critical Points 2016 , 469-479		
14	Spectroscopic imaging STM studies of broken electronic symmetries in underdoped cuprates. <i>Physica B: Condensed Matter</i> , 2012 , 407, 1859-1863	2.8	
13	Dilute Fermi and Bose Gases. <i>Lecture Notes in Physics</i> , 2012 , 277-304	0.8	
12	A quantum critical trio: Solvable models of finite temperature crossovers near quantum phase transitions 1997 , 33-87		

LIST OF PUBLICATIONS

11	WiedemannBranz law analysis near a pair-breaking quantum phase transition in superconducting nanowires. <i>Physica B: Condensed Matter</i> , 2008 , 403, 1309-1311	2.8
10	Order and quantum phase transitions in the cuprate superconductors. <i>Solid State Communications</i> , 2003 , 127, 169-171	1.6
9	Impurity spin dynamics in 2D antiferromagnets and superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 327-328	1.3
8	STABLE hc/e VORTICES IN SUPERCONDUCTORS WITH SPIN-CHARGE SEPARATION. <i>International Journal of Modern Physics B</i> , 1992 , 06, 509-526	1.1
7	Icosahedral Ordering in Supercooled Liquids and Metallic Glasses. Partially Ordered Systems, 1992, 255	-283
6	LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION. <i>Annals of the New York Academy of Sciences</i> , 1990 , 581, 217-222	6.5
5	Order and frustration on a random topography 1985 , 227-230	
4	Damping of Collective Modes and Quasiparticles in d-Wave Superconductors 2001 , 3-21	
3	Field theories of paramagnetic Mott insulators 2003 , 637-646	
2	Frustration and Order in Rapidly Cooled Metals. NATO ASI Series Series B: Physics, 1987, 327-336	

Dynamics and Transport Near Quantum-Critical Points 1998, 133-178