Bradley J Merrill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/35602/publications.pdf

Version: 2024-02-01

26 papers 2,231 citations

331670
21
h-index

26 g-index

27 all docs

27 docs citations

times ranked

27

3704 citing authors

#	Article	IF	CITATIONS
1	Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nature Cell Biology, 2022, 24, 35-50.	10.3	53
2	Sequential Activation of Guide RNAs to Enable Successive CRISPR-Cas9 Activities. Molecular Cell, 2021, 81, 226-238.e5.	9.7	7
3	Netrin-1 promotes naive pluripotency through Neo1 and Unc5b co-regulation of Wnt and MAPK signalling. Nature Cell Biology, 2020, 22, 389-400.	10.3	24
4	Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9. Nature Structural and Molecular Biology, 2019, 26, 679-685.	8.2	97
5	Intracellular Ca2+ Homeostasis and Nuclear Export Mediate Exit from Naive Pluripotency. Cell Stem Cell, 2019, 25, 210-224.e6.	11.1	24
6	<i>TCF7L1</i> suppresses primitive streak gene expression to support human embryonic stem cell pluripotency. Development (Cambridge), 2018, 145, .	2.5	18
7	A Novel <scp>l</scp> -Asparaginase with low <scp>l</scp> -Glutaminase Coactivity Is Highly Efficacious against Both T- and B-cell Acute Lymphoblastic Leukemias <i>In Vivo</i> . Cancer Research, 2018, 78, 1549-1560.	0.9	67
8	Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling. Cell Reports, 2018, 25, 571-584.e5.	6.4	55
9	Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks. Molecular Cell, 2018, 71, 42-55.e8.	9.7	112
10	Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells. Scientific Reports, 2017, 7, 42127.	3.3	23
11	DDB2 Is a Novel Regulator of Wnt Signaling in Colon Cancer. Cancer Research, 2017, 77, 6562-6575.	0.9	26
12	Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells. Nucleic Acids Research, 2016, 44, 7997-8010.	14.5	48
13	Transcription factor 7-like 1 is involved in hypothalamo–pituitary axis development in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E548-57.	7.1	47
14	Regulation of Tcf7l1 DNA Binding and Protein Stability as Principal Mechanisms of Wnt/ \hat{l}^2 -Catenin Signaling. Cell Reports, 2013, 4, 1-9.	6.4	109
15	Tcf7l1 prepares epiblast cells in the gastrulating mouse embryo for lineage specification. Development (Cambridge), 2013, 140, 1665-1675.	2.5	62
16	Function of Wntſl²-catenin in counteracting Tcf3 repression through the Tcf3–β-catenin interaction. Development (Cambridge), 2012, 139, 2118-2129.	2.5	97
17	Wnt Pathway Regulation of Embryonic Stem Cell Self-Renewal. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007971-a007971.	5 . 5	77
18	Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nature Cell Biology, 2011, 13, 762-770.	10.3	274

#	Article	IF	CITATIONS
19	Non-cell-autonomous stimulation of stem cell proliferation following ablation of Tcf3. Experimental Cell Research, 2010, 316, 1050-1060.	2.6	6
20	Canonical Wnt/ \hat{l}^2 -Catenin Regulation of Liver Receptor Homolog-1 Mediates Pluripotency Gene Expression Â. Stem Cells, 2010, 28, 1794-1804.	3.2	120
21	Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10514-10519.	7.1	222
22	Tcf3 Functions as a Steady-State Limiter of Transcriptional Programs of Mouse Embryonic Stem Cell Self-Renewal. Stem Cells, 2008, 26, 1951-1960.	3.2	147
23	Develop-WNTs in Somatic Cell Reprogramming. Cell Stem Cell, 2008, 3, 465-466.	11.1	14
24	Stem Cells and TCF Proteins: A Role for β-Catenin—Independent Functions. Stem Cell Reviews and Reports, 2007, 3, 39-48.	5.6	16
25	Repression of Nanog Gene Transcription by Tcf3 Limits Embryonic Stem Cell Self-Renewal. Molecular and Cellular Biology, 2006, 26, 7479-7491.	2.3	277
26	Tcf3: a transcriptional regulator of axis induction in the early embryo. Development (Cambridge), 2004, 131, 263-274.	2.5	209