Joanna Juhaniewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3559472/publications.pdf

Version: 2024-02-01

623734 642732 23 574 14 23 g-index citations h-index papers 23 23 23 764 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The use of EQCM for setting the optimum conditions of the determination of Pd2+ ions via its palladium–histidine complex. Electrochimica Acta, 2021, 368, 137599.	5.2	1
2	The shape of lipid molecules affects potential-driven molecular-scale rearrangements in model cell membranes on electrodes. Bioelectrochemistry, 2020, 132, 107443.	4.6	11
3	Water Structure in the Submembrane Region of a Floating Lipid Bilayer: The Effect of an Ion Channel Formation and the Channel Blocker. Langmuir, 2020, 36, 409-418.	3.5	23
4	Physicochemical and Biological Characterization of Novel Membrane-Active Cationic Lipopeptides with Antimicrobial Properties. Langmuir, 2020, 36, 12900-12910.	3.5	15
5	Physicochemical Characterization of Daptomycin Interaction with Negatively Charged Lipid Membranes. Langmuir, 2020, 36, 5324-5335.	3.5	22
6	Effect of Interfacial Water on the Nanomechanical Properties of Negatively Charged Floating Bilayers Supported on Gold Electrodes. Langmuir, 2019, 35, 9422-9429.	3.5	14
7	Electron Transport and a Rectifying Effect of Oligourea Foldamer Films Entrapped within Nanoscale Junctions. Journal of Physical Chemistry C, 2019, 123, 1136-1141.	3.1	6
8	Diverse effect of cationic lipopeptide on negatively charged and neutral lipid bilayers supported on gold electrodes. Electrochimica Acta, 2019, 298, 735-744.	5.2	10
9	Lipopeptide-induced changes in permeability of solid supported bilayers composed of bacterial membrane lipids. Journal of Electroanalytical Chemistry, 2018, 812, 227-234.	3.8	10
10	An <i>in situ</i> spectroelectrochemical study on the orientation changes of an [Fe ⁱⁱⁱ L ^{N2O3}] metallosurfactant deposited as LB Films on gold electrode surfaces. Dalton Transactions, 2018, 47, 14218-14226.	3.3	14
11	Characterization of planar biomimetic lipid films composed of phosphatidylethanolamines and phosphatidylglycerols from Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 475-483.	2.6	20
12	Modulation of Activity of Ultrashort Lipopeptides toward Negatively Charged Model Lipid Films. Langmuir, 2017, 33, 4619-4627.	3.5	19
13	Self-assembly of phosphorylated dihydroceramide at Au(111) electrode surface. Materials Chemistry and Physics, 2017, 186, 212-219.	4.0	1
14	Interaction of Cecropin B with Zwitterionic and Negatively Charged Lipid Bilayers Immobilized at Gold Electrode Surface. Electrochimica Acta, 2016, 204, 206-217.	5.2	22
15	Interaction of Melittin with Negatively Charged Lipid Bilayers Supported on Gold Electrodes. Electrochimica Acta, 2016, 197, 336-343.	5.2	22
16	Electron Transport Mediated by Peptides Immobilized on Surfaces. Israel Journal of Chemistry, 2015, 55, 645-660.	2.3	32
17	Spin Filtering in Electron Transport Through Chiral Oligopeptides. Journal of Physical Chemistry C, 2015, 119, 14542-14547.	3.1	171
18	Atomic Force Microscopy and Electrochemical Studies of Melittin Action on Lipid Bilayers Supported on Gold Electrodes. Electrochimica Acta, 2015, 162, 53-61.	5.2	35

#	Article	IF	CITATIONS
19	Mechanism of Lipid Vesicles Spreading and Bilayer Formation on a Au(111) Surface. Langmuir, 2015, 31, 11012-11019.	3.5	30
20	pH dependence of daunorubicin interactions with model DMPC:Cholesterol membranes. Colloids and Surfaces B: Biointerfaces, 2015, 134, 295-303.	5.0	20
21	Electron Transfer Across α-Helical Peptide Monolayers: Importance of Interchain Coupling. Langmuir, 2012, 28, 17287-17294.	3.5	34
22	Peptide molecular junctions: Distance dependent electron transmission through oligoprolines. Bioelectrochemistry, 2012, 87, 21-27.	4.6	24
23	Peptide molecular junctions: Electron transmission through individual amino acid residues. Journal of Electroanalytical Chemistry, 2010, 649, 83-88.	3.8	18