Mariana T Cerqueira

List of Publications by Citations

Source: https://exaly.com/author-pdf/3559287/mariana-t-cerqueira-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35 1,028 20 32 g-index

40 1,219 6.6 4.24 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
35	An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. <i>Acta Biomaterialia</i> , 2013 , 9, 6790-7	10.8	98
34	Stem Cells in Skin Wound Healing: Are We There Yet?. Advances in Wound Care, 2016, 5, 164-175	4.8	77
33	The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications. <i>Green Chemistry</i> , 2012 , 14, 1463	10	74
32	Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds. <i>Biomacromolecules</i> , 2013 , 14, 3997-4008	6.9	71
31	Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. <i>ACS Applied Materials & Discrete Section (1968-79)</i>	9.5	69
30	Engineering cell-adhesive gellan gum spongy-like hydrogels for regenerative medicine purposes. <i>Acta Biomaterialia</i> , 2014 , 10, 4787-4797	10.8	64
29	Cell sheet technology-driven re-epithelialization and neovascularization of skin wounds. <i>Acta Biomaterialia</i> , 2014 , 10, 3145-55	10.8	56
28	Cell selective chitosan microparticles as injectable cell carriers for tissue regeneration. <i>Biomaterials</i> , 2015 , 43, 23-31	15.6	55
27	Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. <i>Scientific Reports</i> , 2016 , 6, 21883	4.9	48
26	Neovascularization Induced by the Hyaluronic Acid-Based Spongy-Like Hydrogels Degradation Products. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	47
25	Stem Cell-Containing Hyaluronic Acid-Based Spongy Hydrogels for Integrated Diabetic Wound Healing. <i>Journal of Investigative Dermatology</i> , 2017 , 137, 1541-1551	4.3	40
24	Gellan gum-hydroxyapatite composite spongy-like hydrogels for bone tissue engineering. <i>Journal of Biomedical Materials Research - Part A</i> , 2018 , 106, 479-490	5.4	39
23	Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model. <i>ACS Applied Materials & Distributed & Distributed & Distributed & Distributed & Distributed & Distrib</i>	9.5	34
22	Human skin cell fractions fail to self-organize within a gellan gum/hyaluronic acid matrix but positively influence early wound healing. <i>Tissue Engineering - Part A</i> , 2014 , 20, 1369-78	3.9	33
21	Expression, purification and osteogenic bioactivity of recombinant human BMP-4, -9, -10, -11 and -14. <i>Protein Expression and Purification</i> , 2009 , 63, 89-94	2	32
20	Boosting and rescuing epidermal superior population from fresh keratinocyte cultures. <i>Stem Cells and Development</i> , 2014 , 23, 34-43	4.4	30
19	Using stem cells in skin regeneration: possibilities and reality. <i>Stem Cells and Development</i> , 2012 , 21, 1201-14	4.4	30

(2018-2017)

18	Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy. <i>Acta Biomaterialia</i> , 2017 , 55, 131-143	10.8	22
17	In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. <i>Acta Biomaterialia</i> , 2017 , 53, 483-494	10.8	20
16	Poly(hydroxybutyrate-co-hydroxyvalerate) bilayer skin tissue engineering constructs with improved epidermal rearrangement. <i>Macromolecular Bioscience</i> , 2014 , 14, 977-90	5.5	20
15	Cork extracts reduce UV-mediated DNA fragmentation and cell death. RSC Advances, 2015, 5, 96151-96	1 <u>5</u> . 7	11
14	Strategies for the hypothermic preservation of cell sheets of human adipose stem cells. <i>PLoS ONE</i> , 2019 , 14, e0222597	3.7	11
13	Fibroblasts regulate osteoblasts through gap junctional communication. <i>Cytotherapy</i> , 2012 , 14, 1276-87	7 4.8	11
12	Growth Factor-Free Pre-vascularization of Cell Sheets for Tissue Engineering. <i>Methods in Molecular Biology</i> , 2016 , 1516, 219-226	1.4	6
11	Epidermis recreation in spongy-like hydrogels. <i>Materials Today</i> , 2015 , 18, 468-469	21.8	5
10	Interfollicular epidermal stem cells: boosting and rescuing from adult skin. <i>Methods in Molecular Biology</i> , 2013 , 989, 1-9	1.4	5
9	Interfollicular Epidermal Stem Cells: Boosting and Rescuing from Adult Skin. <i>Methods in Molecular Biology</i> , 2019 , 1879, 101-110	1.4	4
8	Engineered hydrogel-based matrices for skin wound healing 2016 , 227-250		3
7	Rescuing key native traits in cultured dermal papilla cells for human hair regeneration. <i>Journal of Advanced Research</i> , 2021 , 30, 103-112	13	3
6	Interfollicular epidermal stem-like cells for the recreation of the hair follicle epithelial compartment. <i>Stem Cell Research and Therapy</i> , 2021 , 12, 62	8.3	3
5	Depth (Z-axis) control of cell morphologies on micropatterned surfaces. <i>Journal of Bioactive and Compatible Polymers</i> , 2015 , 30, 555-567	2	2
4	In vitro vascularization of tissue engineered constructs by non-viral delivery of pro-angiogenic genes. <i>Biomaterials Science</i> , 2021 , 9, 2067-2081	7.4	2
3	Regeneration Using Tissue Engineered Skin Strategies 2020 , 255-289		1
2	Keratinocyte Growth Factor-Based Strategies for Wound Re-Epithelialization. <i>Tissue Engineering - Part B: Reviews</i> , 2021 ,	7.9	1
1	Skin in vitro models to study dermal white adipose tissue role in skin healing 2018 , 327-352		