## **Roee Diamant**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3559254/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A survey of techniques and challenges in underwater localization. Ocean Engineering, 2011, 38, 1663-1676.                                                            | 4.3 | 420       |
| 2  | Underwater Localization with Time-Synchronization and Propagation Speed Uncertainties. IEEE Transactions on Mobile Computing, 2013, 12, 1257-1269.                   | 5.8 | 115       |
| 3  | Low Probability of Detection for Underwater Acoustic Communication: A Review. IEEE Access, 2018, 6, 19099-19112.                                                     | 4.2 | 71        |
| 4  | Spatial Reuse Time-Division Multiple Access for Broadcast Ad Hoc Underwater Acoustic Communication Networks. IEEE Journal of Oceanic Engineering, 2011, 36, 172-185. | 3.8 | 68        |
| 5  | LOS and NLOS Classification for Underwater Acoustic Localization. IEEE Transactions on Mobile Computing, 2014, 13, 311-323.                                          | 5.8 | 50        |
| 6  | The DESERT underwater framework v2: Improved capabilities and extension tools. , 2016, , .                                                                           |     | 48        |
| 7  | Cooperative Authentication in Underwater Acoustic Sensor Networks. IEEE Transactions on Wireless Communications, 2019, 18, 954-968.                                  | 9.2 | 47        |
| 8  | Enhanced Fuzzy-Based Local Information Algorithm for Sonar Image Segmentation. IEEE Transactions on Image Processing, 2020, 29, 445-460.                             | 9.8 | 41        |
| 9  | Observability Analysis of DVL/PS Aided INS for a Maneuvering AUV. Sensors, 2015, 15, 26818-26837.                                                                    | 3.8 | 40        |
| 10 | Choosing the right signal. , 2012, , .                                                                                                                               |     | 38        |
| 11 | Adaptive Modulation for Long-Range Underwater Acoustic Communication. IEEE Transactions on Wireless Communications, 2020, 19, 6844-6857.                             | 9.2 | 38        |
| 12 | Fair and Throughput-Optimal Routing in Multimodal Underwater Networks. IEEE Transactions on<br>Wireless Communications, 2018, 17, 1738-1754.                         | 9.2 | 36        |
| 13 | Closed Form Analysis of the Normalized Matched Filter With a Test Case for Detection of Underwater<br>Acoustic Signals. IEEE Access, 2016, 4, 8225-8235.             | 4.2 | 35        |
| 14 | A Statistically-Based Method for the Detection of Underwater Objects in Sonar Imagery. IEEE Sensors<br>Journal, 2019, 19, 6858-6871.                                 | 4.7 | 34        |
| 15 | Robust Spatial Reuse Scheduling in Underwater Acoustic Communication Networks. IEEE Journal of Oceanic Engineering, 2014, 39, 32-46.                                 | 3.8 | 32        |
| 16 | On the Relationship Between the Underwater Acoustic and Optical Channels. IEEE Transactions on Wireless Communications, 2017, 16, 8037-8051.                         | 9.2 | 31        |
| 17 | Scalable Adaptive Networking for the Internet of Underwater Things. IEEE Internet of Things Journal, 2020, 7, 10023-10037.                                           | 8.7 | 28        |
| 18 | Adaptive Error-Correction Coding Scheme for Underwater Acoustic Communication Networks. IEEE<br>Journal of Oceanic Engineering, 2015, 40, 104-114.                   | 3.8 | 25        |

**ROEE DIAMANT** 

| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | An Active Acoustic Track-Before-Detect Approach for Finding Underwater Mobile Targets. IEEE Journal on Selected Topics in Signal Processing, 2019, 13, 104-119.             | 10.8 | 24        |
| 20 | Leveraging the Near–Far Effect for Improved Spatial-Reuse Scheduling in Underwater Acoustic<br>Networks. IEEE Transactions on Wireless Communications, 2017, 16, 1480-1493. | 9.2  | 22        |
| 21 | A Reverse Bearings Only Target Motion Analysis for Autonomous Underwater Vehicle Navigation. IEEE<br>Transactions on Mobile Computing, 2019, 18, 494-506.                   | 5.8  | 22        |
| 22 | A Hybrid Spatial Reuse MAC Protocol for Ad-Hoc Underwater Acoustic Communication Networks. ,<br>2010, , .                                                                   |      | 21        |
| 23 | Topology-Efficient Discovery: A Topology Discovery Algorithm for Underwater Acoustic Networks.<br>IEEE Journal of Oceanic Engineering, 2018, 43, 1200-1214.                 | 3.8  | 21        |
| 24 | Combining Denoising Autoencoders and Dynamic Programming for Acoustic Detection and Tracking of Underwater Moving Targets. Sensors, 2020, 20, 2945.                         | 3.8  | 21        |
| 25 | Planning the verification, validation, and testing process: a case study demonstrating a decision support model. Journal of Engineering Design, 2017, 28, 171-204.          | 2.3  | 20        |
| 26 | Unsupervised Local Spatial Mixture Segmentation of Underwater Objects in Sonar Images. IEEE Journal of Oceanic Engineering, 2019, 44, 1179-1197.                            | 3.8  | 20        |
| 27 | Detecting Submerged Objects Using Active Acoustics and Deep Neural Networks: A Test Case for Pelagic Fish. IEEE Transactions on Mobile Computing, 2022, 21, 2776-2788.      | 5.8  | 18        |
| 28 | A Handshake-Based Protocol Exploiting the Near-Far Effect in Underwater Acoustic Networks. IEEE<br>Wireless Communications Letters, 2016, 5, 308-311.                       | 5.0  | 17        |
| 29 | Bounds for Low Probability of Detection for Underwater Acoustic Communication. IEEE Journal of Oceanic Engineering, 2016, , 1-13.                                           | 3.8  | 16        |
| 30 | Robust Interference Cancellation of Chirp and CW Signals for Underwater Acoustics Applications.<br>IEEE Access, 2018, 6, 4405-4415.                                         | 4.2  | 15        |
| 31 | Implementation of a multi-modal acoustic-optical underwater network protocol stack. , 2016, , .                                                                             |      | 14        |
| 32 | A Parallel Decoding Approach for Mitigating Near–Far Interference in Internet of Underwater Things.<br>IEEE Internet of Things Journal, 2020, 7, 9747-9759.                 | 8.7  | 14        |
| 33 | ASUNA: A Topology Data Set for Underwater Network Emulation. IEEE Journal of Oceanic Engineering, 2021, 46, 307-318.                                                        | 3.8  | 14        |
| 34 | Target detection using features for sonar images. IET Radar, Sonar and Navigation, 2020, 14, 1940-1949.                                                                     | 1.8  | 14        |
| 35 | CFAR detection algorithm for objects in sonar images. IET Radar, Sonar and Navigation, 2020, 14, 1757-1766.                                                                 | 1.8  | 14        |
| 36 | Joint Time and Spatial Reuse Handshake Protocol for Underwater Acoustic Communication Networks.<br>IEEE Journal of Oceanic Engineering, 2013, 38, 470-483.                  | 3.8  | 13        |

**ROEE DIAMANT** 

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | NLOS identification using a hybrid ToA-signal strength algorithm for underwater acoustic localization. , 2010, , .                                                  |     | 12        |
| 38 | A Machine Learning Approach for Dead-Reckoning Navigation at Sea Using a Single Accelerometer. IEEE<br>Journal of Oceanic Engineering, 2014, 39, 672-684.           | 3.8 | 12        |
| 39 | Data Packet Structure and Modem Design for Dynamic Underwater Acoustic Channels. IEEE Journal of<br>Oceanic Engineering, 2019, 44, 837-849.                         | 3.8 | 12        |
| 40 | Clustering Approach for Detection and Time of Arrival Estimation of Hydrocoustic Signals. IEEE<br>Sensors Journal, 2016, 16, 5308-5318.                             | 4.7 | 11        |
| 41 | Tracking the Slipper Lobster Using Acoustic Tagging: Testbed Description. IEEE Journal of Oceanic Engineering, 2020, 45, 577-585.                                   | 3.8 | 11        |
| 42 | An efficient method to measure reliability of underwater acoustic communication links. Journal of<br>Ocean Engineering and Science, 2016, 1, 129-134.               | 4.3 | 10        |
| 43 | Dead Reckoning for Trajectory Estimation of Underwater Drifters under Water Currents â€. Journal of<br>Marine Science and Engineering, 2020, 8, 205.                | 2.6 | 10        |
| 44 | A Time Difference of Arrival Based Target Motion Analysis for Localization of Underwater Vehicles.<br>IEEE Transactions on Vehicular Technology, 2022, 71, 326-338. | 6.3 | 10        |
| 45 | Optimal Transmission Scheduling in Small Multimodal Underwater Networks. IEEE Wireless<br>Communications Letters, 2019, 8, 368-371.                                 | 5.0 | 9         |
| 46 | Bathymetry-aided underwater acoustic localization using a single passive receiver. Journal of the Acoustical Society of America, 2019, 146, 4774-4789.              | 1.1 | 9         |
| 47 | Localization of Acoustically Tagged Marine Animals in Under-Ranked Conditions. IEEE Transactions on<br>Mobile Computing, 2021, 20, 1126-1137.                       | 5.8 | 9         |
| 48 | Feature Set for Classification of Man-Made Underwater Objects in Optical and SAS Data. IEEE Sensors<br>Journal, 2022, 22, 6027-6041.                                | 4.7 | 8         |
| 49 | A Clustering Approach for the Detection of Acoustic/Seismic Signals of Unknown Structure. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 1017-1029.  | 6.3 | 7         |
| 50 | Underwater Acoustic Detection and Localization with a Convolutional Denoising Autoencoder. , 2019, , .                                                              |     | 7         |
| 51 | Efficient link discovery for underwater networks. , 2016, , .                                                                                                       |     | 6         |
| 52 | Anchorless underwater acoustic localization. , 2017, , .                                                                                                            |     | 6         |
| 53 | A graph localization approach to assist a diver-in-distress. , 2017, , .                                                                                            |     | 6         |
| 54 | A Factor-Graph Clustering Approach for Detection of Underwater Acoustic Signals. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 702-706.                     | 3.1 | 5         |

Roee Diamant

| #  | Article                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Graph-Based Clustering of Dolphin Whistles. IEEE/ACM Transactions on Audio Speech and Language<br>Processing, 2021, 29, 2216-2227.                            | 5.8 | 5         |
| 56 | Prediction of Water Current Using a Swarm of Submerged Drifters. IEEE Sensors Journal, 2020, 20, 11598-11607.                                                 | 4.7 | 4         |
| 57 | THEMO: The Texas A&M ―University of Haifa ―Eastern Mediterranean Observatory. , 2018, , .                                                                     |     | 3         |
| 58 | Cross-Sensor Quality Assurance for Marine Observatories. Remote Sensing, 2020, 12, 3470.                                                                      | 4.0 | 3         |
| 59 | A Graph Localization Approach for Underwater Sensor Networks to Assist a Diver in Distress.<br>Sensors, 2021, 21, 1306.                                       | 3.8 | 3         |
| 60 | A Multispectral Target Detection in Sonar Imagery. , 2021, , .                                                                                                |     | 3         |
| 61 | Robust Automatic Detector And Feature Extractor For Dolphin Whistles. , 2019, , .                                                                             |     | 2         |
| 62 | Origami-Inspired Adaptive Acoustic Tank for Optimal Reflection Mitigation. IEEE Sensors Journal, 2020, 20, 15193-15203.                                       | 4.7 | 2         |
| 63 | Detection of Dolphin Whistle-Like Biomimicking Signals by Phase Analysis. IEEE Access, 2022, 10, 36868-36876.                                                 | 4.2 | 2         |
| 64 | Joint time and spatial reuse handshake protocol for underwater acoustic communication networks. ,<br>2011, , .                                                |     | 1         |
| 65 | Under-ranked localization of Acoustically Tagged Mobile Marine Animals. , 2018, , .                                                                           |     | 1         |
| 66 | Communication Operations at THEMO: the Texas A&M - University of Haifa - Eastern Mediterranean<br>Observatory. , 2018, , .                                    |     | 1         |
| 67 | Robust Graph Localization for Underwater Acoustic Networks. , 2021, , .                                                                                       |     | 1         |
| 68 | Design of an Optimal Testbed for Acoustic Tags: Test Case for Marine Megafauna. Frontiers in Marine Science, 0, 9, .                                          | 2.5 | 1         |
| 69 | ThreatDetect: An Autonomous Platform to secure Marine Infrastructures. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 271-281. | 0.3 | 0         |