
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/355893/publications.pdf Version: 2024-02-01

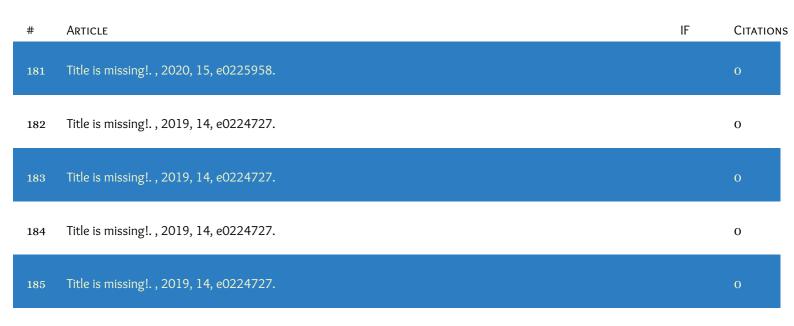
#	Article	lF	CITATIONS
1	Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3460-3465.	7.1	404
2	Biomarkers of gastric cancer: Current topics and future perspective. World Journal of Gastroenterology, 2018, 24, 2818-2832.	3.3	300
3	<i>FGFR2</i> -Amplified Gastric Cancer Cell Lines Require FGFR2 and Erbb3 Signaling for Growth and Survival. Cancer Research, 2008, 68, 2340-2348.	0.9	259
4	The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma. Cancers, 2014, 6, 1441-1463.	3.7	167
5	Activation of Transforming Growth Factor Beta 1 Signaling in Gastric Cancer-associated Fibroblasts Increases Their Motility, via Expression of Rhomboid 5 Homolog 2, and Ability to Induce Invasiveness of Gastric Cancer Cells. Gastroenterology, 2017, 153, 191-204.e16.	1.3	158
6	Predictive Potential of Preoperative Nutritional Status in Long-Term Outcome Projections for Patients with Gastric Cancer. Annals of Surgical Oncology, 2016, 23, 525-533.	1.5	118
7	Inhibition of Cyclooxygenase-2 Suppresses Lymph Node Metastasis via Reduction of Lymphangiogenesis. Cancer Research, 2007, 67, 10181-10189.	0.9	117
8	Peritoneal metastatic model for human scirrhous gastric carcinoma in nude mice. Clinical and Experimental Metastasis, 1996, 14, 43-54.	3.3	113
9	Futibatinib Is a Novel Irreversible FGFR 1–4 Inhibitor That Shows Selective Antitumor Activity against FGFR-Deregulated Tumors. Cancer Research, 2020, 80, 4986-4997.	0.9	102
10	The Niche Component Periostin Is Produced by Cancer-Associated Fibroblasts, Supporting Growth of Gastric Cancer through ERK Activation. American Journal of Pathology, 2014, 184, 859-870.	3.8	100
11	THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling. Modern Pathology, 2011, 24, 1390-1403.	5.5	96
12	Cancer-associated fibroblasts might sustain the stemness of scirrhous gastric cancer cells via transforming growth factor-l² signaling. International Journal of Cancer, 2014, 134, 1785-1795.	5.1	94
13	Extracellular Vesicles from Cancer-Associated Fibroblasts Containing Annexin A6 Induces FAK-YAP Activation by Stabilizing β1 Integrin, Enhancing Drug Resistance. Cancer Research, 2020, 80, 3222-3235.	0.9	94
14	Coordinated expression of REG4 and aldehyde dehydrogenase 1 regulating tumourigenic capacity of diffuseâ€type gastric carcinomaâ€initiating cells is inhibited by TGFâ€Î². Journal of Pathology, 2012, 228, 391-404.	4.5	91
15	Hypoxia Stimulates the EMT of Gastric Cancer Cells through Autocrine TGFÎ ² Signaling. PLoS ONE, 2013, 8, e62310.	2.5	91
16	Cancer–Stromal Interactions in Scirrhous Gastric Carcinoma. Cancer Microenvironment, 2010, 3, 127-135.	3.1	87
17	Cancer extracellular vesicles contribute to stromal heterogeneity by inducing chemokines in cancer-associated fibroblasts. Oncogene, 2019, 38, 5566-5579.	5.9	87
18	A Pretreatmentâ€Free, Polymerâ€Based Platform Prepared by Molecular Imprinting and Postâ€Imprinting Modifications for Sensing Intact Exosomes. Angewandte Chemie - International Edition, 2019, 58, 1612-1615.	13.8	87

#	Article	IF	CITATIONS
19	Cronkhite-Canada Syndrome Containing Colon Cancer and Serrated Adenoma Lesions. Digestion, 2004, 69, 57-62.	2.3	86
20	Lysyl oxidase-like 2 (LOXL2) from stromal fibroblasts stimulates the progression of gastric cancer. Cancer Letters, 2014, 354, 438-446.	7.2	77
21	Keratinocyte growth factor produced by gastric fibroblasts specifically stimulates proliferation of cancer cells from scirrhous gastric carcinoma. Cancer Research, 2003, 63, 8848-52.	0.9	77
22	Epigenetic modulation and repression of miR-200b by cancer-associated fibroblasts contribute to cancer invasion and peritoneal dissemination in gastric cancer. Carcinogenesis, 2015, 36, 133-141.	2.8	76
23	Decreased expression of the adhesion molecule desmoglein-2 is associated with diffuse-type gastric carcinoma. European Journal of Cancer, 2006, 42, 2397-2403.	2.8	75
24	Transforming Growth Factor-β and Hepatocyte Growth Factor Produced by Gastric Fibroblasts Stimulate the Invasiveness of Scirrhous Gastric Cancer Cells. Japanese Journal of Cancer Research, 1997, 88, 152-159.	1.7	74
25	Cancer stem cellâ€like SP cells have a high adhesion ability to the peritoneum in gastric carcinoma. Cancer Science, 2009, 100, 1397-1402.	3.9	72
26	A Novel Molecular Targeting Compound as K-samII/FGF-R2 Phosphorylation Inhibitor, Ki23057, for Scirrhous Gastric Cancer. Gastroenterology, 2006, 131, 1530-1541.	1.3	70
27	Micro <scp>RNA</scp> â€143 regulates collagen type <scp>III</scp> expression in stromal fibroblasts of scirrhous type gastric cancer. Cancer Science, 2014, 105, 228-235.	3.9	68
28	Lysyl oxidase is associated with the epithelial–mesenchymal transition of gastric cancer cells in hypoxia. Gastric Cancer, 2016, 19, 431-442.	5.3	67
29	Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncology Reports, 2006, 16, 563-8.	2.6	67
30	Diffuse-Type Gastric Carcinoma: Progression, Angiogenesis, and Transforming Growth Factor β Signaling. Journal of the National Cancer Institute, 2009, 101, 592-604.	6.3	66
31	Monoclonal Antibodies to Fibroblast Growth Factor Receptor 2 Effectively Inhibit Growth of Gastric Tumor Xenografts. Clinical Cancer Research, 2010, 16, 5750-5758.	7.0	66
32	Fibrosis in the peritoneum induced by Scirrhous gastric cancer cells may act as "soil―for peritoneal dissemination. , 1996, 77, 1668-1675.		65
33	Fibrosis in the peritoneum induced by scirrhous gastric cancer cells may act as ?Soil? for peritoneal dissemination. Cancer, 1996, 77, 1668-1675.	4.1	65
34	CD9-positive exosomes from cancer-associated fibroblasts stimulate the migration ability of scirrhous-type gastric cancer cells. British Journal of Cancer, 2018, 118, 867-877.	6.4	63
35	Hepatocyte growth factor (HGF) produced by peritoneal fibroblasts may affect mesothelial cell morphology and promote peritoneal dissemination. , 1996, 67, 289-293.		60
36	Transforming growth factor β signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncology Reports, 2010, 24, 1637-43.	2.6	60

#	Article	IF	CITATIONS
37	Expression of intercellular adhesion molecule-1 and prognosis in colorectal cancer. Oncology Reports, 2002, 9, 511-4.	2.6	59
38	Cancerâ€associated orthotopic myofibroblasts stimulates the motility of gastric carcinoma cells. Cancer Science, 2012, 103, 797-805.	3.9	57
39	VEGF-A/VEGFR-2 Signaling Plays an Important Role for the Motility of Pancreas Cancer Cells. Annals of Surgical Oncology, 2012, 19, 2733-2743.	1.5	56
40	Macrophage-mediated transfer of cancer-derived components to stromal cells contributes to establishment of a pro-tumor microenvironment. Oncogene, 2019, 38, 2162-2176.	5.9	54
41	Clinicopathological Correlations of Autophagy-related Proteins LC3, Beclin 1 and p62 in Gastric Cancer. Anticancer Research, 2016, 36, 129-36.	1.1	54
42	DNA methyltransferase inhibitor 5â€azaâ€CdR enhances the radiosensitivity of gastric cancer cells. Cancer Science, 2009, 100, 181-188.	3.9	52
43	The outcome of surgical treatment for elderly patients with gastric carcinoma. Journal of Surgical Oncology, 2015, 111, 848-854.	1.7	51
44	Is a Lymph Node Detected by the Dye-Guided Method a True Sentinel Node in Gastric Cancer?. Clinical Cancer Research, 2004, 10, 6912-6918.	7.0	50
45	Stromal SOX2 Upregulation Promotes Tumorigenesis through the Generation of a SFRP1/2-Expressing Cancer-Associated Fibroblast Population. Developmental Cell, 2021, 56, 95-110.e10.	7.0	50
46	Molecular targets for the treatment of pancreatic cancer: Clinical and experimental studies. World Journal of Gastroenterology, 2016, 22, 776.	3.3	48
47	Co-expression of keratinocyte growth factor and K-sam is an independent prognostic factor in gastric carcinoma. Oncology Reports, 2009, 21, 875-80.	2.6	47
48	Establishment of lymph node metastatic model for human gastric cancer in nude mice and analysis of factors associated with metastasis. Clinical and Experimental Metastasis, 1997, 16, 389-398.	3.3	46
49	Synchronous multiple primary gastrointestinal cancer exhibits frequent microsatellite instability. , 2000, 86, 678-683.		46
50	Up regulation of ICAM-1 gene expression inhibits tumour growth and liver metastasis in colorectal carcinoma. European Journal of Cancer, 2005, 41, 1802-1810.	2.8	46
51	Establishment and characterization of multidrug-resistant gastric cancer cell lines. Anticancer Research, 2010, 30, 915-21.	1.1	46
52	Role of Orthotopic Fibroblasts in the Development of Scirrhous Gastric Carcinoma. Japanese Journal of Cancer Research, 1994, 85, 883-886.	1.7	45
53	Ulcerative Colitis-Associated Colorectal Cancer is Frequently Associated with the Microsatellite Instability Pathway. Diseases of the Colon and Rectum, 2008, 51, 1387-1394.	1.3	45
54	Adverse Effects of Preoperative Sarcopenia on Postoperative Complications of Patients With Gastric Cancer. Anticancer Research, 2019, 39, 987-992.	1.1	45

#	Article	IF	CITATIONS
55	Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia. PLoS ONE, 2016, 11, e0159912.	2.5	45
56	CD133 Is a Useful Surrogate Marker for Predicting Chemosensitivity to Neoadjuvant Chemotherapy in Breast Cancer. PLoS ONE, 2012, 7, e45865.	2.5	44
57	IGF-1 receptor and IGF binding protein-3 might predict prognosis of patients with resectable pancreatic cancer. BMC Cancer, 2013, 13, 392.	2.6	44
58	Clinical significance of vimentin-positive gastric cancer cells. Anticancer Research, 2010, 30, 5239-43.	1.1	44
59	Effects of acute and chronic hypoxia on the radiosensitivity of gastric and esophageal cancer cells. Anticancer Research, 2011, 31, 3369-75.	1.1	44
60	CD44H Plays an Important Role in Peritoneal Dissemination of Scirrhous Gastric Cancer Cells. Japanese Journal of Cancer Research, 1996, 87, 1235-1244.	1.7	43
61	Stromal Fibroblasts Mediate Extracellular Matrix Remodeling and Invasion of Scirrhous Gastric Carcinoma Cells. PLoS ONE, 2014, 9, e85485.	2.5	43
62	The Clinicopathological Significance of the CXCR2 Ligands, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8 in Gastric Cancer. Anticancer Research, 2019, 39, 6645-6652.	1.1	43
63	Phosphorylated Smad2 in Advanced Stage Gastric Carcinoma. BMC Cancer, 2010, 10, 652.	2.6	41
64	A FGFR2 inhibitor, Ki23057, enhances the chemosensitivity of drug-resistant gastric cancer cells. Cancer Letters, 2011, 307, 47-52.	7.2	41
65	Decrease in ICAM-1 expression on gastric cancer cells is correlated with lymph node metastasis. Gastric Cancer, 1999, 2, 221-225.	5.3	40
66	Novel models for human scirrhous gastric carcinoma in vivo. Cancer Science, 2004, 95, 893-900.	3.9	40
67	Synergistic antitumor effects of FGFR2 inhibitor with 5â€ f luorouracil on scirrhous gastric carcinoma. International Journal of Cancer, 2010, 126, 1004-1016.	5.1	40
68	Synergistic antiproliferative effect of mTOR inhibitors in combination with 5â€fluorouracil in scirrhous gastric cancer. Cancer Science, 2009, 100, 2402-2410.	3.9	39
69	Comparative Proteomics Analysis of Gastric Cancer Stem Cells. PLoS ONE, 2014, 9, e110736.	2.5	39
70	Recent advances in the HER2 targeted therapy of gastric cancer. World Journal of Clinical Cases, 2015, 3, 42.	0.8	39
71	CXCL1–Chemokine (C-X-C Motif) Receptor 2 Signaling Stimulates the Recruitment of Bone Marrow–Derived Mesenchymal Cells into Diffuse-Type Gastric Cancer Stroma. American Journal of Pathology, 2016, 186, 3028-3039.	3.8	39
72	Molecular Alterations of Colorectal Cancer with Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2015, 60, 2251-2263.	2.3	38

#	Article	lF	CITATIONS
73	A Novel Transforming Growth Factor β Receptor Kinase Inhibitor, A-77, Prevents the Peritoneal Dissemination of Scirrhous Gastric Carcinoma. Clinical Cancer Research, 2008, 14, 2850-2860.	7.0	37
74	Significance of the Lysyl Oxidase Members Lysyl Oxidase Like 1, 3, and 4 in Gastric Cancer. Digestion, 2018, 98, 238-248.	2.3	36
75	Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncology Reports, 2006, 16, 563.	2.6	33
76	RhoA/ROCK signaling mediates plasticity of scirrhous gastric carcinoma motility. Clinical and Experimental Metastasis, 2011, 28, 627-636.	3.3	33
77	MicroRNA-145 is a potential prognostic factor of scirrhous type gastric cancer. Oncology Reports, 2014, 32, 1720-1726.	2.6	33
78	Effect of organ-specific fibroblasts on proliferation and differentiation of breast cancer cells. Breast Cancer Research and Treatment, 2005, 90, 307-313.	2.5	32
79	Clinico-pathological significance of exosome marker CD63 expression on cancer cells and stromal cells in gastric cancer. PLoS ONE, 2018, 13, e0202956.	2.5	32
80	Precision medicine for gastrointestinal cancer: Recent progress and future perspective. World Journal of Gastrointestinal Oncology, 2019, 12, 1-20.	2.0	31
81	Fibroblast growth factor receptor signaling as therapeutic targets in gastric cancer. World Journal of Gastroenterology, 2016, 22, 2415.	3.3	30
82	ICAM-2 Gene Therapy for Peritoneal Dissemination of Scirrhous Gastric Carcinoma. Clinical Cancer Research, 2004, 10, 4885-4892.	7.0	29
83	Mutations in TGFbeta-RII and BAXmediate tumor progression in the later stages of colorectal cancer with microsatellite instability. BMC Cancer, 2010, 10, 303.	2.6	29
84	Mesothelial Cells Create a Novel Tissue Niche That Facilitates Gastric Cancer Invasion. Cancer Research, 2017, 77, 684-695.	0.9	28
85	Carbonic anhydrase 9 is associated with chemosensitivity and prognosis in breast cancer patients treated with taxane and anthracycline. BMC Cancer, 2014, 14, 400.	2.6	27
86	Synergic antiproliferative effect of DNA methyltransferase inhibitor in combination with anticancer drugs in gastric carcinoma. Cancer Science, 2006, 97, 938-944.	3.9	26
87	Design and synthesis of a series of α-benzyl phenylpropanoic acid-type peroxisome proliferator-activated receptor (PPAR) gamma partial agonists with improved aqueous solubility. Bioorganic and Medicinal Chemistry, 2013, 21, 2319-2332.	3.0	26
88	Clinicopathologic significance of the CXCL1-CXCR2 axis in the tumor microenvironment of gastric carcinoma. PLoS ONE, 2017, 12, e0178635.	2.5	26
89	Crosstalk Between Cancer Associated Fibroblasts and Cancer Cells in Scirrhous Type Gastric Cancer. Frontiers in Oncology, 2020, 10, 568557.	2.8	26
90	ICAM-1(Intercellular Adhesion Molecule-1) Gene Transfection Inhibits Lymph Node Metastasis by Human Gastric Cancer Cells. Japanese Journal of Cancer Research, 2000, 91, 925-933.	1.7	25


#	Article	IF	CITATIONS
91	Diffuse-type gastric cancer cells switch their driver pathways from FGFR2 signaling to SDF1/CXCR4 axis in hypoxic tumor microenvironments. Carcinogenesis, 2015, 36, bgv134.	2.8	24
92	Clinicopathological Significance of Autophagy-related Proteins and its Association With Genetic Alterations in Gliomas. Anticancer Research, 2019, 39, 1233-1242.	1.1	24
93	Serrated Adenomas Have a Pattern of Genetic Alterations That Distinguishes Them from Other Colorectal Polyps. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 2253-2256.	2.5	23
94	Epigenetic regulation of the embryonic oncogene ERas in gastric cancer cells. International Journal of Oncology, 2009, 35, 997-1003.	3.3	23
95	Hypoxia upregulates adhesion ability to peritoneum through a transforming growth factor-β-dependent mechanism in diffuse-type gastric cancer cells. European Journal of Cancer, 2010, 46, 995-1005.	2.8	23
96	Tranilast (N-3,4-dimethoxycinamoyl anthranilic acid): a novel inhibitor of invasion-stimulating interaction between gastric cancer cells and orthotopic fibroblasts. Anticancer Research, 2003, 23, 3899-904.	1.1	23
97	Adhesion polypeptides are useful for the prevention of peritoneal dissemination of gastric cancer. Clinical and Experimental Metastasis, 1997, 16, 381-388.	3.3	22
98	K-ras mutation influences macroscopic features of gastric carcinoma. Journal of Surgical Research, 2005, 124, 74-78.	1.6	22
99	Pyruvate kinase isozyme M2 and glutaminase might be promising molecular targets for the treatment of gastric cancer. Cancer Science, 2017, 108, 2462-2469.	3.9	22
100	The clinicopathological significance of Thrombospondin-4 expression in the tumor microenvironment of gastric cancer. PLoS ONE, 2019, 14, e0224727.	2.5	22
101	Cancerâ€associated fibroblasts educate normal fibroblasts to facilitate cancer cell spreading and Tâ€cell suppression. Molecular Oncology, 2022, 16, 166-187.	4.6	21
102	Polymeric Micelle Platform for Multimodal Tomographic Imaging to Detect Scirrhous Gastric Cancer. ACS Biomaterials Science and Engineering, 2015, 1, 1067-1076.	5.2	20
103	Tumorâ€associated macrophages induce capillary morphogenesis of lymphatic endothelial cells derived from human gastric cancer. Cancer Science, 2016, 107, 1101-1109.	3.9	20
104	High stromalÂtransforming growth factor β–induced expression is a novel marker of progression and poor prognosis in gastric cancer. Journal of Surgical Oncology, 2018, 118, 966-974.	1.7	20
105	Expression of ERas oncogene in gastric carcinoma. Anticancer Research, 2009, 29, 2189-93.	1.1	19
106	Expression of a Hypoxia-Associated Protein, Carbonic Anhydrase-9, Correlates with Malignant Phenotypes of Gastric Carcinoma. Digestion, 2010, 82, 246-251.	2.3	18
107	Proteomic differential display analysis shows up-regulation of 14-3-3 sigma protein in human scirrhous-type gastric carcinoma cells. Anticancer Research, 2010, 30, 4459-65.	1.1	18
108	Inhibitory effect of a selective cyclooxygenase inhibitor on the invasion-stimulating activity of orthotopic fibroblasts for scirrhous gastric cancer cells. Cancer Science, 2005, 96, 451-455.	3.9	17

#	Article	IF	CITATIONS
109	Significance of phosphoâ€vascular endothelial growth factor receptorâ€2 expression in pancreatic cancer. Cancer Science, 2010, 101, 1529-1535.	3.9	17
110	Allelic Imbalance at p53 and Microsatellite Instability Are Predictive Markers for Resistance to Chemotherapy in Gastric Carcinoma. Annals of Surgical Oncology, 2009, 16, 2926-2935.	1.5	16
111	<scp>P</scp> rostaglandin <scp>d</scp> synthase is a potential novel therapeutic agent for the treatment of gastric carcinomas expressing PPARÎ ³ . International Journal of Cancer, 2015, 137, 1235-1244.	5.1	16
112	Elevated alpha1-acid glycoprotein in gastric cancer patients inhibits the anticancer effects of paclitaxel, effects restored by co-administration of erythromycin. Clinical and Experimental Medicine, 2016, 16, 585-592.	3.6	16
113	High tissue MMP14 expression predicts worse survival in gastric cancer, particularly with a low PROX1. Cancer Medicine, 2019, 8, 6995-7005.	2.8	16
114	Expression of asporin reprograms cancer cells to acquire resistance to oxidative stress. Cancer Science, 2021, 112, 1251-1261.	3.9	16
115	CD54 Expression Is Predictive for Lymphatic Spread in Human Gastric Carcinoma. Digestive Diseases and Sciences, 2005, 50, 2224-2230.	2.3	15
116	A synergic inhibitory-effect of combination with selective cyclooxygenase-2 inhibitor and S-1 on the peritoneal metastasis for scirrhous gastric cancer cells. Cancer Letters, 2006, 244, 247-251.	7.2	15
117	Selective cyclooxygenase-2 inhibitor downregulates the paracrine epithelial–mesenchymal interactions of growth in scirrhous gastric carcinoma. International Journal of Cancer, 2007, 120, 686-693.	5.1	15
118	Myofibroblasts are associated with the progression of scirrhous gastric carcinoma. Experimental and Therapeutic Medicine, 2010, 1, 547-551.	1.8	15
119	Borrmann's Macroscopic Criteria and p-Smad2 Expression Are Useful Predictive Prognostic Markers for Cytology-Positive Gastric Cancer Patients Without Overt Peritoneal Metastasis. Annals of Surgical Oncology, 2011, 18, 3718-3725.	1.5	15
120	Protein-bound polysaccharide K suppresses tumor fibrosis in gastric cancer by inhibiting the TGF-β signaling pathway. Oncology Reports, 2015, 33, 553-558.	2.6	15
121	Oligodendrocytes Up-regulate the Invasive Activity of Glioblastoma Cells <i>via</i> the Angiopoietin-2 Signaling Pathway. Anticancer Research, 2019, 39, 577-584.	1.1	15
122	Frequent microsatellite instability in primary esophageal carcinoma associated with extraesophageal primary carcinoma. International Journal of Cancer, 2005, 114, 166-173.	5.1	14
123	A novel high-specificity approach for colorectal neoplasia: Detection of K-ras2 oncogene mutation in normal mucosa. International Journal of Cancer, 2005, 113, 1015-1021.	5.1	13
124	A novel angiogenesis inhibitor, Ki23057, is useful for preventing the progression of colon cancer and the spreading of cancer cells to the liver. European Journal of Cancer, 2007, 43, 2612-2620.	2.8	13
125	The significance of scirrhous gastric cancer cell lines: the molecular characterization using cell lines and mouse models. Human Cell, 2018, 31, 271-281.	2.7	13
126	Combination effect of a TGFâ€Î² receptor kinase inhibitor with 5â€FU analog S1 on lymph node metastasis of scirrhous gastric cancer in mice. Cancer Science, 2010, 101, 1846-1852.	3.9	12

#	Article	IF	CITATIONS
127	Circulating tumor cells with FGFR2 expression might be useful to identify patients with existing FGFR2â€overexpressing tumor. Cancer Science, 2020, 111, 4500-4509.	3.9	12
128	Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts. PLoS ONE, 2020, 15, e0234613.	2.5	12
129	PKCλ/Î ¹ inhibition activates an ULK2-mediated interferon response to repress tumorigenesis. Molecular Cell, 2021, 81, 4509-4526.e10.	9.7	12
130	Circulating CEAâ€positive and EpCAMâ€negative tumor cells might be a predictive biomarker for recurrence in patients with gastric cancer. Cancer Medicine, 2021, 10, 521-528.	2.8	12
131	Usefulness of inhibiting the lymph node metastasis in human gastric carcinoma by B7–1 gene transfection1. Journal of Surgical Research, 2004, 122, 89-95.	1.6	11
132	Establishment of a New Scirrhous Gastric Cancer Cell Line with FGFR2 Overexpression, OCUM-14. Annals of Surgical Oncology, 2019, 26, 1093-1102.	1.5	11
133	Clinical difference between fibroblast growth factor receptor 2 subclass, type IIIb and type IIIc, in gastric cancer. Scientific Reports, 2021, 11, 4698.	3.3	11
134	Cancer-associated Fibroblast-derived Spondin-2 Promotes Motility of Gastric Cancer Cells. Cancer Gencer Genomics and Proteomics, 2021, 18, 521-529.	2.0	9
135	Gastric cancer stem cells survive in stress environments via their autophagy system. Scientific Reports, 2021, 11, 20664.	3.3	9
136	NC-6301, a polymeric micelle rationally optimized for effective release of docetaxel, is potent but is less toxic than native docetaxel in vivo. International Journal of Nanomedicine, 2012, 7, 2713.	6.7	8
137	Identification of candidates for driver oncogenes in scirrhousâ€ŧype gastric cancer cell lines. Cancer Science, 2019, 110, 2643-2651.	3.9	8
138	Microscopic distance from tumor invasion front to serosa might be a useful predictive factor for peritoneal recurrence after curative resection of T3-gastric cancer. PLoS ONE, 2020, 15, e0225958.	2.5	8
139	CXCR2 signaling might have a tumor-suppressive role in patients with cholangiocarcinoma. PLoS ONE, 2022, 17, e0266027.	2.5	8
140	Examination of cancer cells exposed to gastric serosa by serosal stamp cytology plus RT-PCR is useful for the identification of gastric cancer patients at high risk of peritoneal recurrence. Surgical Oncology, 2017, 26, 352-358.	1.6	7
141	Long-term survival estimates in older patients with pathological stage I gastric cancer undergoing gastrectomy: Duocentric analysis of simplified scoring system. Journal of Geriatric Oncology, 2019, 10, 604-609.	1.0	7
142	Integrin α5 mediates cancer cell-fibroblast adhesion and peritoneal dissemination of diffuse-type gastric carcinoma. Cancer Letters, 2022, 526, 335-345.	7.2	7
143	Cervical chylous leakage following esophagectomy that was successfully treated by intranodal lipiodol lymphangiography: a case report. BMC Surgery, 2017, 17, 20.	1.3	6
144	EMMPRIN in extracellular vesicles from peritoneal mesothelial cells stimulates the invasion activity of diffuse-type gastric cancer cells. Cancer Letters, 2021, 521, 169-177.	7.2	6

#	Article	IF	CITATIONS
145	SDF1α/CXCR4 axis may be associated with the malignant progression of gastric cancer in the hypoxic tumor microenvironment. Oncology Letters, 2020, 21, 1-1.	1.8	6
146	The role of type D prostanoid receptors and PPARÎ ³ in gastric cancer progression. Anticancer Research, 2014, 34, 2771-8.	1.1	6
147	Transferrin receptor 1 promotes the fibroblast growth factor receptor-mediated oncogenic potential of diffused-type gastric cancer. Oncogene, 2022, 41, 2587-2596.	5.9	6
148	A Synergistic Antitumor Effect of Interleukin-2 Addition with CD80 Immunogene Therapy for Peritoneal Metastasis of Gastric Carcinoma. Digestive Diseases and Sciences, 2007, 52, 1946-1953.	2.3	5
149	Identification of HLAâ€A*2402â€restricted epitope peptide derived from ERas oncogene expressed in human scirrhous gastric cancer. Cancer Science, 2011, 102, 683-689.	3.9	5
150	Serine threonine kinase 11/liver kinase B1 mutation in sporadic scirrhous-type gastric cancer cells. Carcinogenesis, 2020, 41, 1616-1623.	2.8	5
151	Combination of p53 and Ki67 as a Promising Predictor of Postoperative Recurrence of Meningioma. Anticancer Research, 2021, 41, 203-210.	1.1	5
152	Establishment of a new scirrhous gastric cancer cell line with loss of heterozygosity at E-cadherin locus. International Journal of Oncology, 2001, 19, 1029-33.	3.3	4
153	SUCCESSFUL TREATMENT USING A SELF-EXPANDABLE METALLIC STENT IN THE PALLIATION FOR UNRESECTABLE MALIGNANT OBSTRUCTION OF THE COLON AND RECTUM. Digestive Endoscopy, 2004, 16, 332-336.	2.3	4
154	Molecular-targeted therapy toward precision medicine for gastrointestinal caner: Current progress and challenges. World Journal of Gastrointestinal Oncology, 2021, 13, 366-390.	2.0	4
155	Interleukin-8 produced from cancer-associated fibroblasts suppresses proliferation of the OCUCh-LM1 cancer cell line. BMC Cancer, 2022, 22, .	2.6	4
156	MR 77 KDA factor derived from fibroblasts stimulates the invasion ability of breast-cancer cells. International Journal of Cancer, 2001, 92, 181-186.	5.1	3
157	Suppression of peritoneal metastasis in human gastric carcinoma by enhanced immunogenicity of B7-1 transfection. Oncology Reports, 2004, 12, 53.	2.6	3
158	Clinical benefit for clinical sequencing using cancer panel testing. PLoS ONE, 2021, 16, e0247090.	2.5	3
159	The clinicopathologic significance of Tks5 expression of peritoneal mesothelial cells in gastric cancer patients. PLoS ONE, 2021, 16, e0253702.	2.5	3
160	Asporin Expression on Stromal Cells and/or Cancer Cells Might Be A Useful Prognostic Marker in Patients with Diffuse-Type Gastric Cancer. European Surgical Research, 2021, 62, 53-60.	1.3	3
161	Suppression of peritoneal metastasis in human gastric carcinoma by enhanced immunogenicity of B7-1 transfection. Oncology Reports, 2004, 12, 53-7.	2.6	3
162	Significance of tumor heterogeneity of p-Smad2 and c-Met in HER2-positive gastric carcinoma with lymph node metastasis. BMC Cancer, 2022, 22, .	2.6	3

#	ARTICLE	IF	CITATIONS
163	Lipocalin-2 negatively regulates epithelial–mesenchymal transition through matrix metalloprotease-2 downregulation in gastric cancer. Gastric Cancer, 2022, 25, 850-861.	5.3	3
164	SDF1α/CXCR4 axis may be associated with the malignant progression of gastric cancer in the hypoxic tumor microenvironment. Oncology Letters, 2021, 21, 38.	1.8	2
165	CD80 gene therapy for lymph node involvement by gastric carcinoma. International Journal of Oncology, 2004, 25, 1319.	3.3	1
166	Feasibility of Identifying Patients at High Risk of Hereditary Gastric Cancer Based on Clinicopathological Variables. Anticancer Research, 2019, 39, 5057-5064.	1.1	1
167	Dipeptidyl Peptidase-4 from Cancer-associated Fibroblasts Stimulates the Proliferation of Scirrhous-type Gastric Cancer Cells. Anticancer Research, 2022, 42, 501-509.	1.1	1
168	Cronkhite anada Syndrome with Complete Remission after Four Months of Prednisolone Therapy and Polypectomy. Journal of General and Family Medicine, 2015, 16, 297-301.	0.8	0
169	PS02.233: PRETREATMENT PROGNOSTIC FACTORS IN PATIENTS WITH RESECTABLE CSTAGE II-IV THORACIC ESOPHAGEAL SQUAMOUS CELL CARCINOMA. Ecological Management and Restoration, 2018, 31, 188-188.	0.4	Ο
170	FA08.03: PREOPERATIVE SARCOPENIA INFLUENCES THE RISK OF POSTOPERATIVE PNEUMONIA IN PATIENTS WITH ESOPHAGEAL CANCER. Ecological Management and Restoration, 2018, 31, 15-16.	0.4	0
171	PS01.132: RISK FACTORS OF ANASTOMOTIC LEAKAGE AFTER ESOPHAGECTOMY WITH GASTRIC TUBE RECONSTRUCTION FOR THORACIC ESOPHAGEAL CANCER. Ecological Management and Restoration, 2018, 31, 87-87.	0.4	Ο
172	Desmoglein-2. , 2011, , 1089-1090.		0
173	A CASE REPORT OF MALIGNANT LYMPHOMA OF THE CECUM WITH ELEVATED LEVELS OF SERUM LACTIC DEHYDROGENASE. The Journal of the Japanese Practical Surgeon Society, 1990, 51, 2005-2009.	0.0	О
174	Effect of Gastric Fibroblast on the Growth of Human Gastric Scirrhous Carcinoma Cell. Japanese Journal of Gastroenterological Surgery, 1993, 26, 2554-2554.	0.1	0
175	Inhibition of Adhesion and Invasion by Adhesion Peptide in Peritoneal Disseminating Gastric Cancer Cell. Japanese Journal of Gastroenterological Surgery, 1997, 30, 799-799.	0.1	Ο
176	Desmoglein-2. , 2015, , 1-3.		0
177	Desmoglein-2. , 2015, , 1339-1341.		Ο
178	Title is missing!. , 2020, 15, e0225958.		0
179	Title is missing!. , 2020, 15, e0225958.		0
180	Title is missing!. , 2020, 15, e0225958.		0

