
Rong-Ming Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3558809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-assembled twisted superstructures formed by disc-bent core amphiphiles. Giant, 2022, 9, 100087.	2.5	1
2	Curving and Twisting in Self-Assembly of Triblock Terpolymers Driven by a Chiral End Block. Macromolecules, 2022, 55, 1185-1195.	2.2	4
3	Crystallization of polylactides examined by vibrational circular dichroism of intra- and inter-chain chiral interactions. Soft Matter, 2022, 18, 2722-2725.	1.2	6
4	Superlattice Structure from Self-Assembly of High-χ Block Copolymers via Chain Interdigitation. Macromolecules, 2022, 55, 3449-3457.	2.2	7
5	Block Copolymer Modified Nanonetwork Epoxy Resin for Superior Energy Dissipation. Polymers, 2022, 14, 1891.	2.0	2
6	Well-Ordered Nanonetwork Metamaterials from Block Copolymer Templated Syntheses. Accounts of Chemical Research, 2022, 55, 2033-2042.	7.6	15
7	Breaking Mirror Symmetry of Double Gyroids via Self-Assembly of Chiral Block Copolymers. ACS Macro Letters, 2022, 11, 930-934.	2.3	5
8	Fabrication of metallic nanonetworks via templated electroless plating as hydrogenation catalyst. Emergent Materials, 2021, 4, 493-501.	3.2	6
9	Gold Nanohelices for Chiral Plasmonic Films by Templated Electroless Plating. Advanced Optical Materials, 2021, 9, 2002133.	3.6	7
10	Mesoscale networks and corresponding transitions from self-assembly of block copolymers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
11	Isomerâ€Ðependent Photovoltaic Properties of the [6,6]â€Phenylâ€C ₆₁ (or) Tj ETQq1 1 0.784314	rgBT/Ove	rloçk 10 Tf 5
12	Nanonetwork Thermosets from Templated Polymerization for Enhanced Energy Dissipation. Nano Letters, 2021, 21, 3355-3363.	4.5	17
13	Gold Nanohelices for Chiral Plasmonic Films by Templated Electroless Plating (Advanced Optical) Tj ETQq1 1 0.7	84314 rgB 3.6	T /Overlock
14	Self-assembled helical superstructures of polystyrene-b-poly(2-vinyl pyridine) with inversed helicity from induced chirality. Giant, 2021, 7, 100059.	2.5	13
15	Towards achieving a large-area and defect-free nano-line pattern via controlled self-assembly by sequential annealing. Giant, 2021, 8, 100078.	2.5	13
16	Self-Assembly of Semiflexible-Coil Chiral Block Copolymers under Various Segregation Strengths with Multiple Secondary Interactions. Macromolecules, 2021, 54, 9850-9859.	2.2	9
17	Networks with controlled chirality via self-assembly of chiral triblock terpolymers. Science Advances, 2020, 6, .	4.7	36
18	Spiral Hierarchical Superstructures from Twisted Ribbons of Self-Assembled Chiral Block Copolymers. ACS Macro Letters, 2020, 9, 1130-1134.	2.3	16

#	Article	IF	CITATIONS
19	Inter-domain Spacing Control <i>via</i> an Interdigitating Structure to Bilayers in Lamellae-Forming Star-Block Copolymers. ACS Applied Polymer Materials, 2020, 2, 3685-3695.	2.0	7
20	Self-Assembly of Low-Molecular-Weight Asymmetric Linear Triblock Terpolymers: How Low Can We Go?. Molecules, 2020, 25, 5527.	1.7	3
21	Insensitivity of Sterically Defined Helical Chain Conformations to Solvent Quality in Dilute Solution. ACS Macro Letters, 2020, 9, 849-854.	2.3	8
22	Reaction: Amplification of macromolecular helicity through self-assembly. Giant, 2020, 2, 100015.	2.5	1
23	Mesochiral phases from the self-assembly of chiral block copolymers. Polymer Chemistry, 2020, 11, 1542-1554.	1.9	7
24	Li-Ion Capacitor Integrated with Nano-network-Structured Ni/NiO/C Anode and Nitrogen-Doped Carbonized Metal–Organic Framework Cathode with High Power and Long Cyclability. ACS Applied Materials & Interfaces, 2019, 11, 30694-30702.	4.0	46
25	Seeing mesoatomic distortions in soft-matter crystals of a double-gyroid block copolymer. Nature, 2019, 575, 175-179.	13.7	78
26	Three-dimensional visualization of phase transition in polystyrene-block-polydimethylsiloxane thin film. Polymer, 2019, 167, 209-214.	1.8	8
27	Single gyroid-structured metallic nanoporous spheres fabricated from double gyroid-forming block copolymers via templated electroless plating. NPG Asia Materials, 2019, 11, .	3.8	25
28	Generalizing the effects of chirality on block copolymer assembly. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4080-4089.	3.3	37
29	Examination of well ordered nanonetwork materials by real- and reciprocal-space imaging. IUCrJ, 2019, 6, 259-266.	1.0	4
30	Well-Ordered Inorganic Nanonetworks from Block Copolymer Templates: Syntheses and Applications. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 119-207.	0.1	0
31	Thermal Stability of Metal–Organic Frameworks and Encapsulation of CuO Nanocrystals for Highly Active Catalysis. ACS Applied Materials & Interfaces, 2018, 10, 9332-9341.	4.0	56
32	Anatomy of triply-periodic network assemblies: characterizing skeletal and inter-domain surface geometry of block copolymer gyroids. Soft Matter, 2018, 14, 3612-3623.	1.2	29
33	Directed Selfâ€Assembly of Starâ€Block Copolymers by Topographic Nanopatterns through Nucleation and Growth Mechanism. Small, 2018, 14, e1704005.	5.2	12
34	Quantum Dots: Perovskite Quantum Dots with Near Unity Solution and Neatâ€Film Photoluminescent Quantum Yield by Novel Spray Synthesis (Adv. Mater. 7/2018). Advanced Materials, 2018, 30, 1870048.	11.1	6
35	Perovskite Quantum Dots with Near Unity Solution and Neatâ€Film Photoluminescent Quantum Yield by Novel Spray Synthesis. Advanced Materials, 2018, 30, 1705532.	11.1	84
36	A facile method to functionalize gold nano-tripods with high suspension stability in an aqueous environment. Nanoscale, 2018, 10, 7352-7356.	2.8	5

#	Article	IF	CITATIONS
37	Silicon-containing block copolymers for lithographic applications. Progress in Polymer Science, 2018, 77, 19-68.	11.8	72
38	Self-Alignment of Cylinder-Forming Silicon-Containing Block Copolymer Films. Macromolecules, 2018, 51, 7656-7665.	2.2	10
39	Nanoporous gyroid Ni/NiO/C nanocomposites from block copolymer templates with high capacity and stability for lithium storage. Journal of Materials Chemistry A, 2018, 6, 13676-13684.	5.2	36
40	Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers. Accounts of Chemical Research, 2017, 50, 1011-1021.	7.6	78
41	Gyroid-structured nanoporous polymer monolith from PDMS-containing block copolymers for templated synthesis. Polymer, 2017, 126, 360-367.	1.8	26
42	Alkali Metal Ion-enhanced Threading of a Perylenediimide-bound Polymer Chain through a Double-stranded Spiroborate Helicate with a Bisporphyrin Unit. Chemistry Letters, 2017, 46, 970-972.	0.7	2
43	Competitive Interactions of ï€â€"ï€ Junctions and Their Role on Microphase Separation of Chiral Block Copolymers. Chemistry of Materials, 2017, 29, 4493-4501.	3.2	21
44	Effects of the Chiral Interface and Orientation-Dependent Segmental Interactions on Twisting of Self-Assembled Block Copolymers. ACS Macro Letters, 2017, 6, 370-374.	2.3	18
45	Synthesis, molecular characterization and self-assembly of (PS-b-PDMS) _n type linear (n = 1,) Tj ETC	Qq1 1 0.78 1.9	4314 rgBT /
46	Quantifying Surface Area of Nanosheet Graphene Oxide Colloid Using a Gas-Phase Electrostatic Approach. Analytical Chemistry, 2017, 89, 12217-12222.	3.2	18
47	Shape effect-induced spiral superstructures in a self-assembled achiral disc-bent core amphiphile. Chemical Communications, 2017, 53, 11794-11797.	2.2	6
48	Chirality Control and Its Memory at Microphase-Separated Interface of Self-Assembled Chiral Block Copolymers for Nanostructured Chiral Materials. ACS Macro Letters, 2017, 6, 980-986.	2.3	23
49	Fabrication of Mesoporous Polystyrene Films with Controlled Porosity and Pore Size by Solvent Annealing for Templated Syntheses. Langmuir, 2017, 33, 8428-8435.	1.6	11
50	Orienting Silicon-Containing Block Copolymer Films with Perpendicular Cylinders via Entropy and Surface Plasma Treatment. Macromolecules, 2017, 50, 9403-9410.	2.2	31
51	Handedness of Twisted Lamella in Banded Spherulite of Chiral Polylactides and Their Blends. Macromolecules, 2017, 50, 5466-5475.	2.2	37
52	Formulation engineering for optimizing ternary electron acceptors exemplified by isomeric PC ₇₁ BM in planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 18776-18782.	5.2	26
53	Surface PEGylation of Silver Nanoparticles: Kinetics of Simultaneous Surface Dissolution and Molecular Desorption. Langmuir, 2016, 32, 9807-9815.	1.6	20
54	Directed crystallization of isotactic poly(2-vinylpyridine) for preferred lamellar twisting by chiral dopants. Polymer, 2016, 107, 44-53.	1.8	7

#	Article	IF	CITATIONS
55	Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation. Journal of Physical Chemistry C, 2016, 120, 13638-13648.	1.5	28
56	Nanoporous Gyroid-Structured Epoxy from Block Copolymer Templates for High Protein Adsorbability. Langmuir, 2016, 32, 6419-6428.	1.6	15
57	Orienting Block Copolymer Thin Films via Entropy. Macromolecules, 2016, 49, 624-633.	2.2	57
58	Thermal dewetting with a chemically heterogeneous nano-template for self-assembled L1 _O FePt nanoparticle arrays. Nanoscale, 2016, 8, 3926-3935.	2.8	10
59	Nanoporous gyroid metal oxides with controlled thickness and composition by atomic layer deposition from block copolymer templates. Journal of Materials Chemistry C, 2016, 4, 840-849.	2.7	14
60	Controlled Handedness of Twisted Lamellae in Banded Spherulites of Isotactic Poly(2â€vinylpyridine) as Induced by Chiral Dopants. Angewandte Chemie - International Edition, 2015, 54, 14313-14316.	7.2	33
61	Well-ordered nanohybrids and nanoporous materials from gyroid block copolymer templates. Chemical Society Reviews, 2015, 44, 1974-2018.	18.7	198
62	Morphological Evolution of Gyroid-Forming Block Copolymer Thin Films with Varying Solvent Evaporation Rate. ACS Applied Materials & Interfaces, 2015, 7, 16536-16547.	4.0	29
63	Quantifying Nanosheet Graphene Oxide Using Electrospray-Differential Mobility Analysis. Analytical Chemistry, 2015, 87, 3884-3889.	3.2	28
64	Nanoporous gyroid platinum with high catalytic activity from block copolymer templates via electroless plating. NPG Asia Materials, 2015, 7, e170-e170.	3.8	55
65	A Facile Method To Fabricate Double Gyroid as a Polymer Template for Nanohybrids. Macromolecules, 2014, 47, 7993-8001.	2.2	26
66	Highly efficient organic solar cells using a solution-processed active layer with a small molecule donor and pristine fullerene. Journal of Materials Chemistry A, 2014, 2, 3709-3714.	5.2	31
67	Shifting Networks to Achieve Subgroup Symmetry Properties. Advanced Materials, 2014, 26, 3225-3229.	11.1	57
68	Controlled Ordering of Block Copolymer Gyroid Thin Films by Solvent Annealing. Macromolecules, 2014, 47, 175-182.	2.2	43
69	Efficient inverted quasi-bilayer organic solar cells fabricated by using non-halogenated solvent processes. Journal of Materials Chemistry A, 2014, 2, 13398-13406.	5.2	39
70	Directing the Interfacial Morphology of Hierarchical Structures of Dendron-Jacketed Block Copolymers via Liquid Crystalline Phases. Macromolecules, 2014, 47, 6047-6054.	2.2	13
71	Functionalized Nanoporous Gyroid SiO ₂ with Double-Stimuli-Responsive Properties as Environment-Selective Delivery Systems. Macromolecules, 2014, 47, 3041-3051.	2.2	27
72	A polymer-based SERS-active substrate with gyroid-structured gold multibranches. Journal of Materials Chemistry C, 2014, 2, 4667-4675.	2.7	34

#	Article	IF	CITATIONS
73	Lamellarâ€Twistingâ€Induced Circular Dichroism of Chromophore Moieties in Banded Spherulites with Evolution of Homochirality. Angewandte Chemie - International Edition, 2014, 53, 4450-4455.	7.2	39
74	Direct Visualization of Three-Dimensional Morphology in Hierarchically Self-Assembled Mixed Poly(<i>tert</i> -butyl acrylate)/Polystyrene Brush-Grafted Silica Nanoparticles. Macromolecules, 2013, 46, 6575-6584.	2.2	37
75	Photo-induced pyrene association in pyrene-labeled polymers for optical recording. Journal of Materials Chemistry C, 2013, 1, 1601.	2.7	3
76	Phase Transitions of Polystyrene- <i>b</i> -poly(dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules, 2013, 46, 7513-7524.	2.2	67
77	Wellâ€Defined Multibranched Gold with Surface Plasmon Resonance in Nearâ€Infrared Region from Seeding Growth Approach Using Gyroid Block Copolymer Template. Advanced Materials, 2013, 25, 1780-1786.	11.1	63
78	Direct Visualization of Order–Order Transitions in Silicon-Containing Block Copolymers by Electron Tomography. ACS Macro Letters, 2013, 2, 190-194.	2.3	20
79	Double and Single Network Phases in Polystyrene- <i>block</i> -poly(<scp>l</scp> -lactide) Diblock Copolymers. Macromolecules, 2013, 46, 2997-3004.	2.2	33
80	Long-Range Ordering of Block Copolymer Cylinders Driven by Combining Thermal Annealing and Substrate Functionalization. ACS Nano, 2013, 7, 2000-2011.	7.3	48
81	Plasmon Hybridization and Dipolar Interaction on the Resonances of Helix Metamaterials. IEEE Photonics Journal, 2013, 5, 2700510-2700510.	1.0	26
82	Nanostructured thin films of degradable block copolymers and their applications. NPG Asia Materials, 2013, 5, e42-e42.	3.8	35
83	Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering. Proceedings of the United States of America, 2013, 110, 10078-10083.	3.3	202
84	Bicontinuous Ceramics with High Surface Area from Block Copolymer Templates. Langmuir, 2012, 28, 8518-8529.	1.6	72
85	Syndiotactic Polyallyltrimethylsilane-Based Stereoregular Diblock Copolymers: Syntheses and Self-Assembled Nanostructures. Macromolecules, 2012, 45, 2720-2730.	2.2	6
86	Helical Phase Driven by Solvent Evaporation in Self-Assembly of Poly(4-vinylpyridine)- <i>block</i> -poly(<scp> </scp> -lactide) Chiral Block Copolymers. Macromolecules, 2012, 45, 9727-9733.	2.2	21
87	Transfer of Chirality from Molecule to Phase in Self-Assembled Chiral Block Copolymers. Journal of the American Chemical Society, 2012, 134, 10974-10986.	6.6	125
88	Induced circular dichroism of stereoregular vinyl polymers. Chemical Communications, 2012, 48, 3668.	2.2	25
89	Hierarchical Superstructures with Control of Helicity from the Selfâ€Assembly of Chiral Bentâ€Core Molecules. Chemistry - A European Journal, 2012, 18, 9091-9098.	1.7	35
90	Helical assemblies from chiral block copolymers. Soft Matter, 2011, 7, 9797.	1.2	34

#	Article	IF	CITATIONS
91	Scrolled Polymer Single Crystals Driven by Unbalanced Surface Stresses: Rational Design and Experimental Evidence. Macromolecules, 2011, 44, 7758-7766.	2.2	30
92	Photo-induced excimer formation of pyrene-labeled polymers for optical recording. Journal of Materials Chemistry, 2011, 21, 2451.	6.7	21
93	Stereoregular Diblock Copolymers of Syndiotactic Polystyrene Derivatives and Polylactide: Syntheses and Self-Assembled Nanostructures. Macromolecules, 2011, 44, 286-298.	2.2	10
94	Induced Chain Alignment of Conjugated Polymers Within Nanoporous Template. Advanced Functional Materials, 2011, 21, 2729-2736.	7.8	17
95	Nanoporous Gyroid Nickel from Block Copolymer Templates via Electroless Plating. Advanced Materials, 2011, 23, 3041-3046.	11.1	144
96	Helical architectures from self-assembly of chiral polymers and block copolymers. Progress in Polymer Science, 2011, 36, 376-453.	11.8	138
97	Ringâ€øpening polymerization of βâ€butyrolactone catalyzed by efficient magnesium and zinc complexes derived from tridentate anilidoâ€aldimine ligand. Journal of Polymer Science Part A, 2010, 48, 5339-5347.	2.5	35
98	Supramolecular Structure of β-Cyclodextrin and Poly(ethylene oxide)- <i>block</i> -poly(propylene) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 5
99	Kinetically Controlled Self-Assembled Superstructures from Semicrystalline Chiral Block Copolymers. Macromolecules, 2010, 43, 7752-7758.	2.2	37
100	Single Helix to Double Gyroid in Chiral Block Copolymers. Macromolecules, 2010, 43, 8637-8644.	2.2	36
101	Hundred-Nanometer-Size Crystalline Carbon Tubes from Poly(acrylonitrile) Pore-Filling Anodic Aluminum Oxide Templates via Solvent Annealing. Chemistry of Materials, 2010, 22, 4642-4651.	3.2	14
102	Polymeric Crystallization under Nanoscale 2D Spatial Confinement. Macromolecules, 2010, 43, 6237-6240.	2.2	49
103	Inorganic Gyroid with Exceptionally Low Refractive Index from Block Copolymer Templating. Nano Letters, 2010, 10, 4994-5000.	4.5	142
104	Robust Block Copolymer Mask for Nanopatterning Polymer Films. ACS Nano, 2010, 4, 2088-2094.	7.3	90
105	A Springâ€Like Behavior of Chiral Block Copolymer with Helical Nanostructure Driven by Crystallization. Advanced Functional Materials, 2009, 19, 448-459.	7.8	31
106	Novel Nanostructures from Selfâ€Assembly of Chiral Block Copolymers. Macromolecular Rapid Communications, 2009, 30, 1439-1456.	2.0	40
107	Block Copolymers with a Twist. Journal of the American Chemical Society, 2009, 131, 18533-18542.	6.6	126

¹⁰⁸Helical Nanocomposites from Chiral Block Copolymer Templates. Journal of the American Chemical
Society, 2009, 131, 1356-1357.6.695

#	Article	IF	CITATIONS
109	Pore-Filling Nanoporous Templates from Degradable Block Copolymers for Nanoscale Drug Delivery. ACS Nano, 2009, 3, 2660-2666.	7.3	47
110	Syntheses of polyolefinâ€based stereoregular diblock copolymers for selfâ€assembled nanostructures. Journal of Polymer Science Part A, 2008, 46, 4843-4856.	2.5	14
111	Hierarchical Superstructures with Helical Sense in Selfâ€Assembled Achiral Bananaâ€&haped Liquid Crystalline Molecules. Advanced Functional Materials, 2008, 18, 3386-3394.	7.8	21
112	Banded Spherulites in PSâ^'PLLA Chiral Block Copolymers. Macromolecules, 2008, 41, 3949-3956.	2.2	58
113	Variation of Helical Twisting Power in Self-Assembled Sugar-Appended Schiff Base Chiral Rodâ^'Coil Amphiphiles. Chemistry of Materials, 2008, 20, 1404-1409.	3.2	28
114	Isotactic Polypropylene-Based Stereoregular Diblock Copolymers: Syntheses and Self-Assembly. Macromolecules, 2008, 41, 7967-7977.	2.2	21
115	Oxide nanodot arrays templated from polymer nano-channels via a novel vapor-transport-assisted wet chemistry process. Journal of Materials Research, 2008, 23, 2061-2066.	1.2	4
116	Crystal Orientation within Lamellae-Forming Block Copolymers of Semicrystalline Poly(4-vinylpyridine)- <i>b</i> -poly(Îμ-caprolactone). Macromolecules, 2007, 40, 6778-6781.	2.2	38
117	Mesoporous Carbons from Poly(acrylonitrile)-b-poly(ε-caprolactone) Block Copolymers. Macromolecules, 2007, 40, 2814-2821.	2.2	32
118	In-Situ Formation of CdS Nanoarrays by Pore-Filling Nanoporous Templates from Degradable Block Copolymers. Macromolecules, 2007, 40, 2621-2624.	2.2	35
119	Fabrication of Doubleâ€Lengthâ€Scale Patterns via Lithography, Block Copolymer Templating, and Electrodeposition. Advanced Materials, 2007, 19, 3584-3588.	11.1	37
120	Induced Twisting in the Self-Assembly of Chiral Schiff-based Rodâ^'Coil Amphiphiles. Chemistry of Materials, 2006, 18, 352-359.	3.2	38
121	Helical Morphologies of Thermotropic Liquid-Crystalline Chiral Schiff-Based Rodâ^'Coil Amphiphiles. Chemistry of Materials, 2006, 18, 5510-5519.	3.2	22
122	Trilayer Crystalline Lamellar Morphology under Confinement. Macromolecules, 2006, 39, 2739-2742.	2.2	21
123	Syntheses of Stereoregular Amorphousâ ^{°°} Crystalline Diblock Copolymers and Their Self-Assembly Studies. Macromolecules, 2006, 39, 7520-7526.	2.2	18
124	Tubular Nanostructures from Degradable Core–Shell Cylinder Microstructures in Chiral Diblock Copolymers. Advanced Materials, 2006, 18, 2355-2358.	11.1	57
125	Solvent-induced microdomain orientation in polystyrene-b-poly(l-lactide) diblock copolymer thin films for nanopatterning. Polymer, 2005, 46, 9362-9377.	1.8	120
126	Crystallization of Polystyrene-block-[Syndiotactic Poly(propylene)] Block Copolymers from Confinement to Breakout. Macromolecular Rapid Communications, 2005, 26, 107-111.	2.0	33

#	Article	IF	CITATIONS
127	Three-Dimensionally Packed Nanohelical Phase in Chiral Block Copolymers. Journal of the American Chemical Society, 2004, 126, 2704-2705.	6.6	172
128	Block Copolymer Self-Assembly Induced Compatibilization of PCL/PSâ^'PEP Blends. Macromolecules, 2002, 35, 1299-1306.	2.2	22
129	REGIME CRYSTALLIZATION AND BANDED SPHERULITE OF POLY(TRIMETHYLENE TEREPHTHALATE). Journal of Macromolecular Science - Physics, 2002, 41, 1063-1078.	0.4	23
130	Isothermal Crystallization-Induced Phase Transition of Syndiotactic Polystyrene Polymorphism. Macromolecules, 2001, 34, 6727-6736.	2.2	38
131	Crystallization kinetics for low-ether-content polyether-polyester block copolymers with amide linkages. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2469-2480.	2.4	3
132	Block Copolymer Based Pressure Sensitive Adhesives Modified with PPO for Increased Service Temperatures. Journal of Adhesion, 2000, 73, 65-85.	1.8	2
133	Crystal Structure and Banded Spherulite of Poly(trimethylene terephthalate). Macromolecules, 2000, 33, 7529-7537.	2.2	207
134	Melting temperature depression for low ether content polyether-polyester block copolymers with amide linkages. Journal of Polymer Research, 1999, 6, 79-89.	1.2	2
135	Transition Mechanisms for Complex Ordered Phases in Block Copolymer Melts. Journal of Physical Chemistry B, 1998, 102, 1356-1363.	1.2	115
136	Microstructure of triblock copolymers in asphalt oligomers. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2857-2877.	2.4	64
137	Microstructure of triblock copolymers in asphalt oligomers. , 1997, 35, 2857.		1