Xi-Yan Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3558708/publications.pdf

Version: 2024-02-01

70 6,201 papers citations

36 h-index 95266 68 g-index

70 all docs

70 docs citations

70 times ranked 5407 citing authors

#	Article	IF	CITATIONS
1	Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nature Chemistry, 2017, 9, 689-697.	13.6	790
2	MOFâ€Derived Bifunctional Cu ₃ P Nanoparticles Coated by a N,Pâ€Codoped Carbon Shell for Hydrogen Evolution and Oxygen Reduction. Advanced Materials, 2018, 30, 1703711.	21.0	477
3	Novel Tb-MOF Embedded with Viologen Species for Multi-Photofunctionality: Photochromism, Photomodulated Fluorescence, and Luminescent pH Sensing. Chemistry of Materials, 2015, 27, 1327-1331.	6.7	404
4	Highly selective Fe ³⁺ sensing and proton conduction in a water-stable sulfonate–carboxylate Tb–organic-framework. Journal of Materials Chemistry A, 2015, 3, 641-647.	10.3	340
5	Unique Proton Dynamics in an Efficient MOF-Based Proton Conductor. Journal of the American Chemical Society, 2017, 139, 3505-3512.	13.7	283
6	Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Science Advances, 2020, 6, eaay0107.	10.3	175
7	AlE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angewandte Chemie - International Edition, 2020, 59, 10052-10058.	13.8	165
8	Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chemical Society Reviews, 2021, 50, 2297-2319.	38.1	164
9	Tandem Silver Cluster Isomerism and Mixed Linkers to Modulate the Photoluminescence of Clusterâ€Assembled Materials. Angewandte Chemie - International Edition, 2018, 57, 8560-8566.	13.8	161
10	Porphyrinic Silver Cluster Assembled Material for Simultaneous Capture and Photocatalysis of Mustard-Gas Simulant. Journal of the American Chemical Society, 2019, 141, 14505-14509.	13.7	161
11	Aqueous- and vapor-phase detection of nitroaromatic explosives by a water-stable fluorescent microporous MOF directed by an ionic liquid. Journal of Materials Chemistry A, 2015, 3, 12690-12697.	10.3	156
12	A Crystalline Copper(II) Coordination Polymer for the Efficient Visibleâ€Lightâ€Driven Generation of Hydrogen. Angewandte Chemie - International Edition, 2016, 55, 2073-2077.	13.8	140
13	Tuning the functional substituent group and guest of metal–organic frameworks in hybrid membranes for improved interface compatibility and proton conduction. Journal of Materials Chemistry A, 2017, 5, 3464-3474.	10.3	140
14	A Flexible Fluorescent SCC-MOF for Switchable Molecule Identification and Temperature Display. Chemistry of Materials, 2018, 30, 2160-2167.	6.7	138
15	A tetranuclear Cu4(Î⅓3-OH)2-based metal–organic framework (MOF) with sulfonate–carboxylate ligands for proton conduction. Chemical Communications, 2013, 49, 10590.	4.1	127
16	Enantiomeric MOF Crystals Using Helical Channels as Palettes with Bright White Circularly Polarized Luminescence. Advanced Materials, 2020, 32, e2002914.	21.0	125
17	Ferroelectric Switchable Behavior through Fast Reversible De/adsorption of Water Spirals in a Chiral 3D Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 10214-10217.	13.7	124
18	Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides. Journal of the American Chemical Society, 2019, 141, 15755-15760.	13.7	124

#	Article	IF	Citations
19	Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nature Communications, 2020, 11, 3678.	12.8	122
20	Guestâ€Triggered Aggregationâ€Induced Emission in Silver Chalcogenolate Cluster Metal–Organic Frameworks. Advanced Science, 2019, 6, 1801304.	11.2	120
21	Synergy between Isomorphous Acid and Basic Metal–Organic Frameworks for Anhydrous Proton Conduction of Low-Cost Hybrid Membranes at High Temperatures. ACS Applied Materials & Interfaces, 2018, 10, 38209-38216.	8.0	103
22	Robust multifunctional Zr-based metal–organic polyhedra for high proton conductivity and selective CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 7724-7730.	10.3	101
23	Alkynyl-Stabilized Superatomic Silver Clusters Showing Circularly Polarized Luminescence. Journal of the American Chemical Society, 2021, 143, 6048-6053.	13.7	95
24	Alkaline Earth Metal (Mg, Sr, Ba)–Organic Frameworks Based on 2,2′,6,6′-Tetracarboxybiphenyl for Proton Conduction. Inorganic Chemistry, 2014, 53, 12050-12057.	4.0	93
25	Cations Controlling the Chiral Assembly of Luminescent Atomically Precise Copper(I) Clusters. Angewandte Chemie - International Edition, 2019, 58, 12143-12148.	13.8	93
26	Thermoinduced structural-transformation and thermochromic luminescence in organic manganese chloride crystals. Chemical Science, 2019, 10, 3836-3839.	7.4	92
27	Dual-Functional Proton-Conducting and pH-Sensing Polymer Membrane Benefiting from a Eu-MOF. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28720-28726.	8.0	92
28	Circularly polarized luminescence of agglomerate emitters. Aggregate, 2021, 2, e48.	9.9	81
29	Sulfonic Groups Lined along Channels of Metal–Organic Frameworks (MOFs) for Super-Proton Conductor. Inorganic Chemistry, 2020, 59, 396-402.	4.0	77
30	Apically Co-nanoparticles-wrapped nitrogen-doped carbon nanotubes from a single-source MOF for efficient oxygen reduction. Journal of Materials Chemistry A, 2018, 6, 24071-24077.	10.3	73
31	Multiple Responsive CPL Switches in an Enantiomeric Pair of Perovskite Confined in Lanthanide MOFs. Advanced Materials, 2022, 34, e2109496.	21.0	67
32	Sulfonic and phosphonic porous solids as proton conductors. Coordination Chemistry Reviews, 2022, 451, 214241.	18.8	63
33	Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands. Coordination Chemistry Reviews, 2022, 453, 214315.	18.8	62
34	Extra Silver Atom Triggers Roomâ€√emperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angewandte Chemie - International Edition, 2020, 59, 11898-11902.	13.8	52
35	Symmetry Breaking of Atomically Precise Fullerene-like Metal Nanoclusters. Journal of the American Chemical Society, 2021, 143, 12439-12444.	13.7	49
36	Bimetal–Organic-Framework-Derived Nanohybrids Cu _{0.9} Co _{2.1} S ₄ @MoS ₂ for High-Performance Visible-Light-Catalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 1134-1148.	5.1	42

#	Article	IF	Citations
37	Full-Color Tunable Circularly Polarized Luminescence Induced by the Crystal Defect from the Co-assembly of Chiral Silver(I) Clusters and Dyes. Journal of the American Chemical Society, 2021, 143, 20574-20578.	13.7	39
38	Surface oxygen vacancies promoted Pt redispersion to single-atoms for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 13890-13897.	10.3	38
39	Linker Flexibilityâ€Dependent Cluster Transformations and Clusterâ€Controlled Luminescence in Isostructural Silver Clusterâ€Assembled Materials (SCAMs). Chemistry - A European Journal, 2019, 25, 3376-3381.	3.3	36
40	AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angewandte Chemie, 2020, 132, 10138-10144.	2.0	34
41	Small symmetry-breaking triggering large chiroptical responses of Ag70 nanoclusters. Nature Communications, 2022, 13, 1177.	12.8	31
42	Tandem Silver Cluster Isomerism and Mixed Linkers to Modulate the Photoluminescence of Clusterâ€Assembled Materials. Angewandte Chemie, 2018, 130, 8696-8702.	2.0	30
43	Crystalline Metalâ€Organic Materials with Thermally Activated Delayed Fluorescence. Advanced Optical Materials, 2021, 9, 2100081.	7.3	30
44	A Crystalline Copper(II) Coordination Polymer for the Efficient Visible‣ightâ€Driven Generation of Hydrogen. Angewandte Chemie, 2016, 128, 2113-2117.	2.0	26
45	N-donor ligand mediated assembly of divalent zinc and cadmium coordination polymers based on 2,3,2′,3′-thiaphthalic acid: structures and properties. CrystEngComm, 2012, 14, 4444.	2.6	25
46	A new silver cluster that emits bright-blue phosphorescence. Chemical Communications, 2020, 56, 2451-2454.	4.1	24
47	A hydrophobic semiconducting metal–organic framework assembled from silver chalcogenide wires. Chemical Communications, 2020, 56, 2091-2094.	4.1	22
48	Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
49	Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor. Inorganic Chemistry, 2022, 61, 3406-3411.	4.0	19
50	Creating a Polar Surface in Carbon Frameworks from Single-Source Metal–Organic Frameworks for Advanced CO2 Uptake and Lithium–Sulfur Batteries. Chemistry of Materials, 2019, 31, 4258-4266.	6.7	17
51	Fabrication of silver chalcogenolate cluster hybrid membranes with enhanced structural stability and luminescence efficiency. Chemical Communications, 2019, 55, 14677-14680.	4.1	16
52	Evolution of all-carboxylate-protected superatomic Ag clusters confined in Ti-organic cages. Nano Research, 2021, 14, 2309.	10.4	16
53	An enantiomeric pair of 2D organic–inorganic hybrid perovskites with circularly polarized luminescence and photoelectric effects. Journal of Materials Chemistry C, 2022, 10, 3440-3446.	5.5	16
54	Cations Controlling the Chiral Assembly of Luminescent Atomically Precise Copper(I) Clusters. Angewandte Chemie, 2019, 131, 12271-12276.	2.0	15

#	Article	IF	CITATIONS
55	Water sandwiched by a pair of aromatic rings in a proton-conducting metal–organic framework. Dalton Transactions, 2016, 45, 18142-18146.	3.3	10
56	Extra Silver Atom Triggers Roomâ€Temperature Photoluminescence in Atomically Precise Radarlike Silver Clusters. Angewandte Chemie, 2020, 132, 11996-12000.	2.0	7
57	Master key to coinage metal nanoclusters treasure chest: 38-metal clusters. Nanoscale, 2022, 14, 1538-1565.	5.6	6
58	Facile Synthesis of a Heteroatoms′ Quaternaryâ€Doped Porous Carbon as an Efficient and Stable Metalâ€Free Catalyst for Oxygen Reduction. ChemistrySelect, 2017, 2, 6129-6134.	1.5	5
59	Nanosized Functional MOFs Loading Ag/AgBr with Throughoutâ€Visibleâ€Light Absorption for Highâ€Efficiency Photocatalysis. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 706-711.	1.2	5
60	Ensembles from silver clusters and cucurbit[6]uril-containing linkers. Dalton Transactions, 2021, 50, 15267-15273.	3.3	5
61	Frontispiece: Circularly polarized luminescence of agglomerate emitters. Aggregate, 2021, 2, e138.	9.9	5
62	An efficient and versatile biopolishing strategy to construct high performance zinc anode. Nano Research, 2022, 15, 5081-5088.	10.4	5
63	Electrostatic attraction induces cationic covalent-organic framework to pack inorganic acid ions for promoting proton conduction. Chemical Communications, 2022, 58, 6084-6087.	4.1	5
64	Achiral copper clusters helically confined in self-assembled chiral nanotubes emitting circularly polarized phosphorescence. Inorganic Chemistry Frontiers, 2022, 9, 3330-3334.	6.0	5
65	Site-specific sulfur-for-metal replacement in a silver nanocluster. Chemical Communications, 2022, 58, 7321-7324.	4.1	5
66	Co-assembly of Ag ₂₉ Nanoclusters with Ru(bpy) ₃ ²⁺ for Two-Photon Up-Conversion and Singlet Oxygen Generation., 2022, 4, 960-966.		4
67	Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angewandte Chemie, 0, , .	2.0	3
68	Copper Nanoclusters: Cu ₁₄ Cluster with Partial Cu(0) Character: Difference in Electronic Structure from Isostructural Silver Analog (Adv. Sci. 18/2019). Advanced Science, 2019, 6, 1970108.	11.2	2
69	Aquabis(benzoato-κO)(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2009, 65, m1290-m1290.	0.2	1
70	Bis(μ-biphenyl-2,2′-dicarboxylato)bis[aqua(4,4′-dimethyl-2,2′-bipyridine-κ2N,N′)copper(II)]. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, m1360-m1360.	0.2	1