Damian G Zuloaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3558495/publications.pdf

Version: 2024-02-01

331670 330143 1,451 37 21 37 citations h-index g-index papers 41 41 41 1773 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Estimating the glutamate transporter surface density in distinct sub-cellular compartments of mouse hippocampal astrocytes. PLoS Computational Biology, 2022, 18, e1009845.	3.2	5
2	Androgen Regulation of Corticotropin Releasing Factor Receptor 1 in the Mouse Brain. Neuroscience, 2022, 491, 185-199.	2.3	6
3	Alterations in corticotropin-releasing factor receptor type 1 in the preoptic area and hypothalamus in mice during the postpartum period. Hormones and Behavior, 2021, 135, 105044.	2.1	7
4	Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1. Cell Reports, 2020, 33, 108255.	6.4	45
5	Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biology of Sex Differences, 2020, 11, 44.	4.1	53
6	A CRH Receptor Type 1 Agonist Increases GABA Transmission to GnRH Neurons in a Circulating-Estradiol-Dependent Manner. Endocrinology, 2020, 161 , .	2.8	10
7	Sex-dependent effects of chronic variable stress on discrete corticotropin-releasing factor receptor 1 cell populations. Physiology and Behavior, 2020, 219, 112847.	2.1	15
8	A sexually dimorphic distribution of corticotropin-releasing factor receptor 1 in the paraventricular hypothalamus. Neuroscience, 2019, 409, 195-203.	2.3	19
9	Stress-induced neural activation is altered during early withdrawal from chronic methamphetamine. Behavioural Brain Research, 2019, 366, 67-76.	2.2	11
10	Characterization and gonadal hormone regulation of a sexually dimorphic corticotropinâ€releasing factor receptor 1 cell group. Journal of Comparative Neurology, 2019, 527, 1056-1069.	1.6	24
11	Chronic Methamphetamine Exposure Attenuates Neural Activation in Hypothalamic–Pituitary–Adrenal Axis-Associated Brain Regions in a Sex-specific Manner. Neuroscience, 2018, 380, 132-145.	2.3	12
12	Hypothalamic-pituitary-adrenal axis responsiveness to methamphetamine is modulated by gonadectomy in males. Brain Research, 2017, 1677, 74-85.	2,2	8
13	Bi-directional and shared epigenomic signatures following proton and 56Fe irradiation. Scientific Reports, 2017, 7, 10227.	3.3	36
14	Distribution of corticotropin-releasing factor receptor 1 in the developing mouse forebrain: A novel sex difference revealed in the rostral periventricular hypothalamus. Neuroscience, 2017, 361, 167-178.	2.3	22
15	Short- and long-term effects of 56Fe irradiation on cognition and hippocampal DNA methylation and gene expression. BMC Genomics, 2016, 17, 825.	2.8	49
16	Chronic methamphetamine exposure prior to middle cerebral artery occlusion increases infarct volume and worsens cognitive injury in Male mice. Metabolic Brain Disease, 2016, 31, 975-981.	2.9	9
17	Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma. EBioMedicine, 2016, 3, 26-42.	6.1	59
18	Immediate and lasting effects of chronic daily methamphetamine exposure on activation of cells in hypothalamic-pituitary-adrenal axis-associated brain regions. Psychopharmacology, 2016, 233, 381-392.	3.1	8

#	Article	IF	Citations
19	Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex. Behavioural Brain Research, 2016, 298, 1-11.	2.2	24
20	Methamphetamine and the hypothalamic-pituitary-adrenal axis. Frontiers in Neuroscience, 2015, 9, 178.	2.8	37
21	Enhanced functional connectivity involving the ventromedial hypothalamus following methamphetamine exposure. Frontiers in Neuroscience, 2015, 9, 326.	2.8	8
22	ApoE2 Exaggerates PTSD-Related Behavioral, Cognitive, and Neuroendocrine Alterations. Neuropsychopharmacology, 2015, 40, 2443-2453.	5.4	59
23	Removal of Perineuronal Nets in the Medial Prefrontal Cortex Impairs the Acquisition and Reconsolidation of a Cocaine-Induced Conditioned Place Preference Memory. Journal of Neuroscience, 2015, 35, 4190-4202.	3.6	170
24	Sex differences in activation of the hypothalamic–pituitary–adrenal axis by methamphetamine. Journal of Neurochemistry, 2014, 129, 495-508.	3.9	48
25	Estrogen receptor \hat{l}^2 expression in the mouse forebrain: Age and sex differences. Journal of Comparative Neurology, 2014, 522, 358-371.	1.6	83
26	Enhanced hippocampusâ€dependent memory and reduced anxiety in mice overâ€expressing human catalase in mitochondria. Journal of Neurochemistry, 2013, 125, 303-313.	3.9	63
27	Developmental Methamphetamine Exposure Results in Short- and Long-Term Alterations in Hypothalamic-Pituitary-Adrenal-Axis-Associated Proteins. Developmental Neuroscience, 2013, 35, 338-346.	2.0	18
28	Distribution and Estrogen Regulation of Membrane Progesterone Receptor- \hat{l}^2 in the Female Rat Brain. Endocrinology, 2012, 153, 4432-4443.	2.8	53
29	Prenatal dexamethasone selectively decreases calretinin expression in the adult female lateral amygdala. Neuroscience Letters, 2012, 521, 109-114.	2.1	16
30	Perinatal dexamethasoneâ€induced alterations in apoptosis within the hippocampus and paraventricular nucleus of the hypothalamus are influenced by age and sex. Journal of Neuroscience Research, 2012, 90, 1403-1412.	2.9	32
31	Male rats with the testicular feminization mutation of the androgen receptor display elevated anxiety-related behavior and corticosterone response to mild stress. Hormones and Behavior, 2011, 60, 380-388.	2.1	57
32	The Organizational Role of Testicular Hormones and the Androgen Receptor in Anxiety-Related Behaviors and Sensorimotor Gating in Rats. Endocrinology, 2011, 152, 1572-1581.	2.8	31
33	Organizational influence of the postnatal testosterone surge on the circadian rhythm of core body temperature of adult male rats. Brain Research, 2009, 1268, 68-75.	2.2	10
34	Sex differences in stress-induced hyperthermia in rats: Restraint versus confinement. Physiology and Behavior, 2009, 98, 416-420.	2.1	26
35	The role of androgen receptors in the masculinization of brain and behavior: What we've learned from the testicular feminization mutation. Hormones and Behavior, 2008, 53, 613-626.	2.1	209
36	Mice with the testicular feminization mutation demonstrate a role for androgen receptors in the regulation of anxiety-related behaviors and the hypothalamic–pituitary–adrenal axis. Hormones and Behavior, 2008, 54, 758-766.	2.1	76

#	Article	IF	CITATIONS
37	Androgen-sensitivity of somata and dendrites of spinal nucleus of the bulbocavernosus (SNB) motoneurons in male C57BL6J mice. Hormones and Behavior, 2007, 51, 207-212.	2.1	30