Koh Onimaru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3558434/publications.pdf

Version: 2024-02-01

933447 888059 22 653 10 17 h-index citations g-index papers 26 26 26 913 times ranked all docs docs citations citing authors

#	Article	IF	CITATIONS
1	Biomolecular condensates in cancer biology. Cancer Science, 2022, 113, 382-391.	3.9	12
2	Systems Biology Approach to the Origin of the Tetrapod Limb. , 2021, , 89-113.		2
3	Developmental hourglass and heterochronic shifts in fin and limb development. ELife, 2021, 10, .	6.0	10
4	Spatial regulation by multiple Gremlin1 enhancers provides digit development with cis-regulatory robustness and evolutionary plasticity. Nature Communications, 2021, 12, 5557.	12.8	17
5	Predicting gene regulatory regions with a convolutional neural network for processing double-strand genome sequence information. PLoS ONE, 2020, 15, e0235748.	2.5	9
6	The evolutionary origin of developmental enhancers in vertebrates: Insights from nonâ€model species. Development Growth and Differentiation, 2020, 62, 326-333.	1.5	5
7	Title is missing!. , 2020, 15, e0235748.		0
8	Title is missing!. , 2020, 15, e0235748.		0
9	Title is missing!. , 2020, 15, e0235748.		O
10	Title is missing!. , 2020, 15, e0235748.		0
11	Inference of the ancestral vertebrate phenotype through vestiges of the whole-genome duplications. Briefings in Functional Genomics, 2018, 17, 352-361.	2.7	14
12	A staging table for the embryonic development of the brownbanded bamboo shark (<i>Chiloscyllium) Tj ETQq0 (</i>	0 0 _{1.8} BT /0	Overlock 10 Tf
13	A de novo transcriptome assembly of the zebra bullhead shark, Heterodontus zebra. Scientific Data, 2018, 5, 180197.	5.3	11
14	Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nature Ecology and Evolution, 2018, 2, 1761-1771.	7.8	197
15	Migratory appendicular muscles precursor cells in the common ancestor to all vertebrates. Nature Ecology and Evolution, 2017, 1, 1731-1736.	7.8	21
16	The fin-to-limb transition as the re-organization of a Turing pattern. Nature Communications, 2016, 7, 11582.	12.8	80
17	A shift in anterior–posterior positional information underlies the fin-to-limb evolution. ELife, 2015, 4,	6.0	46
18	Acquisition of the paired fins: a view from the sequential evolution of the lateral plate mesoderm. Evolution & Development, 2012, 14, 412-420.	2.0	16

#	Article	IF	CITATION
19	Development and evolution of the lateral plate mesoderm: Comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Developmental Biology, 2011, 359, 124-136.	2.0	57
20	Mechanisms of heart development in the Japanese lamprey, <i>Lethenteron japonicum</i> . Evolution & Development, 2010, 12, 34-44.	2.0	38
21	Heterochronic Shift in Hox-Mediated Activation of Sonic hedgehog Leads to Morphological Changes during Fin Development. PLoS ONE, 2009, 4, e5121.	2.5	53
22	Identification of four <i>Engrailed</i> genes in the Japanese lamprey, <i>Lethenteron japonicum</i> Developmental Dynamics, 2008, 237, 1581-1589.	1.8	33