
## Chen Tan

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3558433/publications.pdf Version: 2024-02-01



<u>CHEN ΤΑΝ</u>

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Liposomal coâ€delivery strategy to improve stability and antioxidant activity of transâ€resveratrol and naringenin. International Journal of Food Science and Technology, 2022, 57, 2701-2714.                                      | 1.3 | 8         |
| 2  | Pickering emulsions by regulating the molecular interactions between gelatin and catechin for improving the interfacial and antioxidant properties. Food Hydrocolloids, 2022, 126, 107425.                                          | 5.6 | 25        |
| 3  | Cubosomes and Hexosomes as Novel Nanocarriers for Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2022, 70, 1423-1437.                                                                                             | 2.4 | 26        |
| 4  | pH-responsive delivery of rebaudioside a sweetener via mucoadhesive whey protein isolate core-shell<br>nanocapsules. Food Hydrocolloids, 2022, 129, 107657.                                                                         | 5.6 | 7         |
| 5  | Application of Advanced Emulsion Technology in the Food Industry: A Review and Critical Evaluation.<br>Foods, 2021, 10, 812.                                                                                                        | 1.9 | 119       |
| 6  | Development of microcapsules using chitosan and alginate via W/O emulsion for the protection of<br>hydrophilic compounds by comparing with hydrogel beads. International Journal of Biological<br>Macromolecules, 2021, 177, 92-99. | 3.6 | 18        |
| 7  | Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent<br>advances. Biotechnology Advances, 2021, 48, 107727.                                                                                    | 6.0 | 109       |
| 8  | Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3164-3191.                                           | 5.9 | 58        |
| 9  | Tunable high internal phase emulsions stabilized by cross-linking/ electrostatic deposition of polysaccharides for delivery of hydrophobic bioactives. Food Hydrocolloids, 2021, 118, 106742.                                       | 5.6 | 29        |
| 10 | Polysaccharide dual coating of yeast capsules for stabilization of anthocyanins. Food Chemistry, 2021, 357, 129652.                                                                                                                 | 4.2 | 25        |
| 11 | Fabrication of pickering high internal phase emulsions stabilized by pecan protein/xanthan gum for enhanced stability and bioaccessibility of quercetin. Food Chemistry, 2021, 357, 129732.                                         | 4.2 | 74        |
| 12 | Yeast cell-derived delivery systems for bioactives. Trends in Food Science and Technology, 2021, 118, 362-373.                                                                                                                      | 7.8 | 21        |
| 13 | Biopolyelectrolyte complex (bioPEC)-based carriers for anthocyanin delivery. Food Hydrocolloids for<br>Health, 2021, 1, 100037.                                                                                                     | 1.6 | 15        |
| 14 | Mitigating the Astringency of Acidified Whey Protein in Proteinaceous High Internal Phase Emulsions.<br>ACS Applied Bio Materials, 2020, 3, 8438-8445.                                                                              | 2.3 | 6         |
| 15 | Biological fate of nanoencapsulated food bioactives. , 2020, , 351-393.                                                                                                                                                             |     | 1         |
| 16 | A Spiderwebâ€Like Metal–Organic Framework Multifunctional Foam. Angewandte Chemie - International<br>Edition, 2020, 59, 9506-9513.                                                                                                  | 7.2 | 41        |
| 17 | A Spiderwebâ€Like Metal–Organic Framework Multifunctional Foam. Angewandte Chemie, 2020, 132,<br>9593-9600.                                                                                                                         | 1.6 | 3         |
| 18 | Protein content of amaranth and quinoa starch plays a key role in their ability as Pickering<br>emulsifiers. Food Chemistry, 2020, 315, 126246.                                                                                     | 4.2 | 44        |

CHEN TAN

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Robust Aqueous Core–Shell–Shell Coconut-like Nanostructure for Stimuli-Responsive Delivery of<br>Hydrophilic Cargo. ACS Nano, 2019, 13, 9016-9027.                                                                           | 7.3 | 74        |
| 20 | Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food and Function, 2019, 10, 6447-6458.                                                                                                  | 2.1 | 101       |
| 21 | A simple route to renewable high internal phase emulsions (HIPEs) strengthened by successive cross-linking and electrostatics of polysaccharides. Chemical Communications, 2019, 55, 1225-1228.                                | 2.2 | 46        |
| 22 | Ultrastable Water-in-Oil High Internal Phase Emulsions Featuring Interfacial and Biphasic Network<br>Stabilization. ACS Applied Materials & Interfaces, 2019, 11, 26433-26441.                                                 | 4.0 | 81        |
| 23 | Robust, sustainable and multifunctional nanofibers with smart switchability for water-in-oil and<br>oil-in-water emulsion separation and liquid marble preparation. Journal of Materials Chemistry A,<br>2019, 7, 26456-26468. | 5.2 | 21        |
| 24 | Combination of internal structuring and external coating in an oleogel-based delivery system for fish oil stabilization. Food Chemistry, 2019, 277, 213-221.                                                                   | 4.2 | 41        |
| 25 | Copigment-polyelectrolyte complexes (PECs) composite systems for anthocyanin stabilization. Food<br>Hydrocolloids, 2018, 81, 371-379.                                                                                          | 5.6 | 41        |
| 26 | High pressure processing of beet extract complexed with anionic polysaccharides enhances red color thermal stability at low pH. Food Hydrocolloids, 2018, 80, 292-297.                                                         | 5.6 | 21        |
| 27 | Synergistic Bathochromic and Hyperchromic Shifts of Anthocyanin Spectra Observed Following<br>Complexation with Iron Salts and Chondroitin Sulfate. Food and Bioprocess Technology, 2018, 11,<br>991-1001.                     | 2.6 | 10        |
| 28 | Polyelectrolyte Complex Inclusive Biohybrid Microgels for Tailoring Delivery of Copigmented<br>Anthocyanins. Biomacromolecules, 2018, 19, 1517-1527.                                                                           | 2.6 | 40        |
| 29 | Anthocyanin stabilization by chitosan-chondroitin sulfate polyelectrolyte complexation integrating catechin co-pigmentation. Carbohydrate Polymers, 2018, 181, 124-131.                                                        | 5.1 | 77        |
| 30 | Polyelectrolyte microcapsules built on CaCO3 scaffolds for the integration, encapsulation, and controlled release of copigmented anthocyanins. Food Chemistry, 2018, 246, 305-312.                                             | 4.2 | 29        |
| 31 | Facile Synthesis of Sustainable High Internal Phase Emulsions by a Universal and Controllable Route.<br>ACS Sustainable Chemistry and Engineering, 2018, 6, 16657-16664.                                                       | 3.2 | 34        |
| 32 | Sonochemically Synthesized Ultrastable High Internal Phase Emulsions via a Permanent Interfacial<br>Layer. ACS Sustainable Chemistry and Engineering, 2018, 6, 14374-14382.                                                    | 3.2 | 40        |
| 33 | Encapsulation of copigmented anthocyanins within polysaccharide microcapsules built upon removable CaCO3 templates. Food Hydrocolloids, 2018, 84, 200-209.                                                                     | 5.6 | 29        |
| 34 | Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization. Food Chemistry, 2018, 264, 342-349.                                            | 4.2 | 36        |
| 35 | Rapid detection of TiO <sub>2</sub> (E171) in table sugar using Raman spectroscopy. Food Additives and<br>Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1-9.                     | 1.1 | 5         |
| 36 | Ag <sub>2</sub> O/TiO <sub>2</sub> Nanocomposite Heterostructure as a Dual Functional<br>Semiconducting Substrate for SERS/SEIRAS Application. Langmuir, 2017, 33, 5345-5352.                                                  | 1.6 | 20        |

CHEN TAN

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Encapsulation of flavonoids in liposomal delivery systems: the case of quercetin, kaempferol and<br>luteolin. Food and Function, 2017, 8, 3198-3208.                                                                                                       | 2.1 | 107       |
| 38 | A facile solvent mediated self-assembly silver nanoparticle mirror substrate for quantitatively improved surface enhanced Raman scattering. Analyst, The, 2017, 142, 4075-4082.                                                                            | 1.7 | 20        |
| 39 | Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocolloids, 2016, 57, 236-245.                                                                                                | 5.6 | 236       |
| 40 | Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocolloids, 2016, 52, 774-784.                                                                                         | 5.6 | 214       |
| 41 | Effect of limited enzymatic hydrolysis on physicoâ€chemical properties of soybean protein<br>isolateâ€maltodextrin conjugates. International Journal of Food Science and Technology, 2015, 50,<br>226-232.                                                 | 1.3 | 13        |
| 42 | Modulating effect of lipid bilayer–carotenoid interactions on the property of liposome<br>encapsulation. Colloids and Surfaces B: Biointerfaces, 2015, 128, 172-180.                                                                                       | 2.5 | 81        |
| 43 | Biopolymer–Lipid Bilayer Interaction Modulates the Physical Properties of Liposomes: Mechanism and<br>Structure. Journal of Agricultural and Food Chemistry, 2015, 63, 7277-7285.                                                                          | 2.4 | 32        |
| 44 | Insights into chitosan multiple functional properties: the role of chitosan conformation in the behavior of liposomal membrane. Food and Function, 2015, 6, 3702-3711.                                                                                     | 2.1 | 27        |
| 45 | The effect of soy protein structural modification on emulsion properties and oxidative stability of fish oil microcapsules. Colloids and Surfaces B: Biointerfaces, 2014, 120, 63-70.                                                                      | 2.5 | 41        |
| 46 | Effects of maltodextrin glycosylation following limited enzymatic hydrolysis on the functional and conformational properties of soybean protein isolate. European Food Research and Technology, 2014, 238, 957-968.                                        | 1.6 | 37        |
| 47 | Liposome as a Delivery System for Carotenoids: Comparative Antioxidant Activity of Carotenoids As<br>Measured by Ferric Reducing Antioxidant Power, DPPH Assay and Lipid Peroxidation. Journal of<br>Agricultural and Food Chemistry, 2014, 62, 6726-6735. | 2.4 | 158       |
| 48 | Modulation of the carotenoid bioaccessibility through liposomal encapsulation. Colloids and Surfaces B: Biointerfaces, 2014, 123, 692-700.                                                                                                                 | 2.5 | 115       |
| 49 | Liposomes as delivery systems for carotenoids: comparative studies of loading ability, storage stability and in vitro release. Food and Function, 2014, 5, 1232.                                                                                           | 2.1 | 145       |
| 50 | Effect of sterilization methods on ginger flavor beverage assessed by partial least squares regression<br>of descriptive sensory analysis and gas chromatography–mass spectrometry. European Food Research<br>and Technology, 2014, 238, 247-257.          | 1.6 | 22        |
| 51 | Chitosan/tripolyphosphateâ€nanoliposomes coreâ€shell nanocomplexes as vitamin <scp>E</scp> carriers:<br>shelfâ€life and thermal properties. International Journal of Food Science and Technology, 2014, 49,<br>1367-1374.                                  | 1.3 | 15        |
| 52 | Preparation and evaluation of chitosan-calcium-gellan gum beads for controlled release of protein.<br>European Food Research and Technology, 2013, 237, 467-479.                                                                                           | 1.6 | 67        |
| 53 | Liposomes as Vehicles for Lutein: Preparation, Stability, Liposomal Membrane Dynamics, and Structure.<br>Journal of Agricultural and Food Chemistry, 2013, 61, 8175-8184.                                                                                  | 2.4 | 131       |
| 54 | Dual Effects of Chitosan Decoration on the Liposomal Membrane Physicochemical Properties As<br>Affected by Chitosan Concentration and Molecular Conformation. Journal of Agricultural and Food<br>Chemistry, 2013, 61, 6901-6910.                          | 2.4 | 43        |