
Haneul Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3558297/publications.pdf Version: 2024-02-01

HANELI IN

#	Article	IF	CITATIONS
1	MXene: an emerging two-dimensional material for future energy conversion and storage applications. Journal of Materials Chemistry A, 2017, 5, 24564-24579.	5.2	450
2	Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017, 9, 12231-12247.	2.8	403
3	Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews, 2018, 47, 8173-8202.	18.7	222
4	Gaâ€Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. Small, 2020, 16, e1903391.	5.2	140
5	Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis. Nano Energy, 2017, 42, 17-25.	8.2	94
6	Nanocatalyst Design for Longâ€Term Operation of Proton/Anion Exchange Membrane Water Electrolysis. Advanced Energy Materials, 2021, 11, 2003188.	10.2	89
7	Recent Progress in Bifunctional Electrocatalysts for Overall Water Splitting under Acidic Conditions. ChemElectroChem, 2019, 6, 3244-3253.	1.7	79
8	Safeguarding the RuO ₂ phase against lattice oxygen oxidation during acidic water electrooxidation. Energy and Environmental Science, 2022, 15, 1119-1130.	15.6	66
9	An IrRu alloy nanocactus on Cu _{2â^'x} S@IrS _y as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes. Journal of Materials Chemistry A, 2018, 6, 16130-16138.	5.2	58
10	Synthesis of compositionally tunable, hollow mixed metal sulphide Co _x Ni _y S _z octahedral nanocages and their composition-dependent electrocatalytic activities for oxygen evolution reaction. Nanoscale, 2017, 9, 15397-15406.	2.8	52
11	Hemi-core@frame AuCu@IrNi nanocrystals as active and durable bifunctional catalysts for the water splitting reaction in acidic media. Nanoscale Horizons, 2019, 4, 727-734.	4.1	43
12	Single-atom oxygen reduction reaction electrocatalysts of Fe, Si, and N co-doped carbon with 3D interconnected mesoporosity. Journal of Materials Chemistry A, 2021, 9, 4297-4309.	5.2	43
13	Scalable synthesis of djurleite copper sulphide (Cu _{1.94} S) hexagonal nanoplates from a single precursor copper thiocyanate and their photothermal properties. CrystEngComm, 2015, 17, 4627-4631.	1.3	36
14	Highly Crystalline Pd ₁₃ Cu ₃ S ₇ Nanoplates Prepared via Partial Cation Exchange of Cu _{1.81} S Templates as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Chemistry of Materials, 2018, 30, 6884-6892.	3.2	36
15	Vacancy-engineered catalysts for water electrolysis. CrystEngComm, 2020, 22, 1500-1513.	1.3	36
16	Rational Synthesis of Heterostructured M/Pt (M = Ru or Rh) Octahedral Nanoboxes and Octapods and Their Structure-Dependent Electrochemical Activity Toward the Oxygen Evolution Reaction. Small, 2015, 11, 4462-4468.	5.2	32
17	Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature, 2022, 603, 631-636.	13.7	31
18	Morphology controlled synthesis of 2-D Ni–Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction. Nano Convergence, 2017, 4, .	6.3	28

Haneul Jin

#	Article	IF	CITATIONS
19	A facet-controlled Rh ₃ Pb ₂ S ₂ nanocage as an efficient and robust electrocatalyst toward the hydrogen evolution reaction. Nanoscale, 2018, 10, 9845-9850.	2.8	28
20	Waste pig blood-derived 2D Fe single-atom porous carbon as an efficient electrocatalyst for zinc–air batteries and AEMFCs. Applied Surface Science, 2021, 563, 150208.	3.1	25
21	Highly Crystalline Hollow Toroidal Copper Phosphosulfide <i>via</i> Anion Exchange: A Versatile Cation Exchange Nanoplatform. ACS Nano, 2020, 14, 11205-11214.	7.3	24
22	Ternary dendritic nanowires as highly active and stable multifunctional electrocatalysts. Nanoscale, 2016, 8, 15167-15172.	2.8	23
23	Infrared Probing of Equilibrium and Dynamics of Metal–Selenocyanate Ion Pairs in N,N-Dimethylformamide Solutions. Journal of Physical Chemistry B, 2012, 116, 9152-9159.	1.2	17
24	Sacrificial Dopant to Enhance the Activity and Durability of Electrochemical N ₂ Reduction Catalysis. ACS Catalysis, 2022, 12, 5684-5697.	5.5	12
25	Strategic design for promoting water behavior via ensemble of thermo-responsive polymer functionalized catalysts and reservoir carbon in anion exchange membrane fuel cells. Journal of Power Sources, 2021, 494, 229738.	4.0	9
26	Pd ₃ Pb Nanosponges for Selective Conversion of Furfural to Furfuryl Alcohol under Mild Condition. Small Methods, 2021, 5, e2100400.	4.6	8
27	Capping agentâ€free synthesis of surface engineered Pt nanocube for direct ammonia fuel cell. International Journal of Energy Research, 2021, 45, 18281-18291.	2.2	7
28	Tailoring of Pt Island RuO ₂ /C Catalysts by Galvanic Replacement to Achieve Superior Hydrogen Oxidation Reaction and CO Poisoning Resistance. ACS Applied Energy Materials, 2021, 4, 8098-8107.	2.5	6
29	Anion Constructor for Atomicâ€Scale Engineering of Antiperovskite Crystals for Electrochemical Reactions. Advanced Functional Materials, 2021, 31, 2009241.	7.8	4
30	One step synthesis of hierarchical dendritic Pt nanostructures with a concave Pt octahedron building unit via simultaneous vertex growth and facet etching. CrystEngComm, 2015, 17, 6848-6851.	1.3	3
31	Nanoparticles: Rational Synthesis of Heterostructured M/Pt (M = Ru or Rh) Octahedral Nanoboxes and Octapods and Their Structure-Dependent Electrochemical Activity Toward the Oxygen Evolution Reaction (Small 35/2015). Small, 2015, 11, 4604-4604.	5.2	0