Maurizio Becucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3558198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noninvasive identification of turmeric and saffron dyes in proteinaceous textile fibres using Raman spectroscopy and multivariate analysis. Journal of Raman Spectroscopy, 2022, 53, 593-607.	2.5	4
2	An active site at work – the role of key residues in C. diphteriae coproheme decarboxylase. Journal of Inorganic Biochemistry, 2022, 229, 111718.	3.5	9
3	Microplastics in the Florence wastewater treatment plant studied by a continuous sampling method and Raman spectroscopy: A preliminary investigation. Science of the Total Environment, 2022, 808, 152025.	8.0	19
4	Linear and Non-Linear Middle Infrared Spectra of Penicillin G in the CO Stretching Mode Region. Symmetry, 2021, 13, 106.	2.2	2
5	Surface-Enhanced Raman Spectroscopy for Bisphenols Detection: Toward a Better Understanding of the Analyte–Nanosystem Interactions. Nanomaterials, 2021, 11, 881.	4.1	14
6	Exciplex Formation in Lipidâ€bound Escherichia coli Flavohemoglobin. ChemPhysChem, 2021, 22, 1134-1140.	2.1	0
7	Detecting rotational disorder in heme proteins: A comparison between resonance Raman spectroscopy, nuclear magnetic resonance, and circular dichroism. Journal of Raman Spectroscopy, 2021, 52, 2536-2549.	2.5	4
8	Yb3+:(LuxY1â^'x)2O3 mixed sesquioxide ceramics for laser applications. Part I: Fabrication, microstructure and spectroscopy. Journal of Alloys and Compounds, 2021, 869, 159227.	5.5	13
9	Multi-analytical approach to the study of mecca gilding technique. Microchemical Journal, 2021, 168, 106415.	4.5	2
10	Reaction intermediate rotation during the decarboxylation of coproheme to heme b in C.Âdiphtheriae. Biophysical Journal, 2021, 120, 3600-3614.	0.5	12
11	Direct microextraction for red lakes detection in painting layers by Raman spectroscopy. European Physical Journal Plus, 2021, 136, 1.	2.6	3
12	Lack of orientation selectivity of the heme insertion in murine neuroglobin revealed by resonance Raman spectroscopy. FEBS Journal, 2020, 287, 4082-4097.	4.7	13
13	Surface-enhanced Raman scattering of glyphosate on dispersed silver nanoparticles: A reinterpretation based on model molecules. Vibrational Spectroscopy, 2020, 108, 103061.	2.2	14
14	Surface Enhanced Raman Spectroscopy for In-Field Detection of Pesticides: A Test on Dimethoate Residues in Water and on Olive Leaves. Molecules, 2019, 24, 292.	3.8	26
15	Chemical enhancement in the SERS spectra of indigo: DFT calculation of the Raman spectra of indigo-Ag14 complexes. Vibrational Spectroscopy, 2019, 100, 159-166.	2.2	9
16	Silver nanowires as infrared-active materials for surface-enhanced Raman scattering. Nanoscale, 2018, 10, 9329-9337.	5.6	19
17	On the SERS quantitative determination of organic dyes. Journal of Raman Spectroscopy, 2018, 49, 997-1005.	2.5	18
18	The Raman and SERS spectra of indigo and indigo-Ag2 complex: DFT calculation and comparison with experiment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 141-148.	3.9	24

#	Article	IF	CITATIONS
19	The ageing of model pigment/linseed oil systems studied by means of vibrational spectroscopies and chemometrics. Vibrational Spectroscopy, 2018, 99, 86-92.	2.2	4
20	An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra. Chemical Physics Letters, 2017, 685, 477-481.	2.6	2
21	Non-covalent interactions in anisole–(CO ₂) _n (n = 1, 2) complexes. Physical Chemistry Chemical Physics, 2017, 19, 22749-22758.	2.8	3
22	Vibrational Spectroscopies and Chemometry for Nondestructive Identification and Differentiation of Painting Binders. Journal of Chemistry, 2017, 2017, 1-10.	1.9	7
23	Microanalysis of Organic Pigments in Ancient Textiles by Surface-Enhanced Raman Scattering on Agar Gel Matrices. Journal of Spectroscopy, 2016, 2016, 1-10.	1.3	20
24	Resonance Raman Spectra of o-Safranin Dye, Free and Adsorbed on Silver Nanoparticles: Experiment and Density Functional Theory Calculation. Journal of Physical Chemistry A, 2016, 120, 5307-5314.	2.5	17
25	Identification of organic dyes by surface-enhanced Raman scattering in nano-composite agar-gel matrices: evaluation of the enhancement factor. Optical and Quantum Electronics, 2016, 48, 1.	3.3	4
26	SERS Spectra of Alizarin Anion–Ag _{<i>n</i>} (<i>n</i> = 2, 4, 14) Systems: TDDFT Calculation and Comparison with Experiment. Journal of Physical Chemistry C, 2016, 120, 12234-12241.	3.1	14
27	High-Resolution Spectroscopic Studies of Complexes Formed by Medium-Size Organic Molecules. Chemical Reviews, 2016, 116, 5014-5037.	47.7	80
28	Multivariate analysis of combined reflectance FT-NIR and micro-Raman spectra on oil-paint models. Microchemical Journal, 2016, 124, 703-711.	4.5	14
29	Multivariate Analysis of Combined Fourier Transform Near-Infrared Spectrometry (FT-NIR) and Raman Datasets for Improved Discrimination of Drying Oils. Applied Spectroscopy, 2015, 69, 865-876.	2.2	25
30	Binding Energies of the π-Stacked Anisole Dimer: New Molecular Beam-Laser Spectroscopy Experiments and CCSD(T) Calculations. Chemistry - A European Journal, 2015, 21, 6637-6637.	3.3	3
31	The SERS spectra of alizarin and its ionized species: The contribution of the molecular resonance to the spectral enhancement. Journal of Molecular Structure, 2015, 1090, 98-106.	3.6	15
32	Binding Energies of the π‣tacked Anisole Dimer: New Molecular Beam—Laser Spectroscopy Experiments and CCSD(T) Calculations. Chemistry - A European Journal, 2015, 21, 6740-6746.	3.3	18
33	Determination of binding energy in molecular clusters by ion imaging methods: A test on the phenol–water 1:1 cluster. Journal of Molecular Structure, 2015, 1090, 2-6.	3.6	2
34	Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles. Analytical and Bioanalytical Chemistry, 2015, 407, 6505-6514.	3.7	39
35	Structure and energetics of the anisole–Ar _n (n = 1, 2, 3) complexes: high-resolution resonant two-photon and threshold ionization experiments, and quantum chemical calculations. Physical Chemistry Chemical Physics, 2015, 17, 12530-12537.	2.8	8
36	Safranin-O dye in the ground state. A study by density functional theory, Raman, SERS and infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 677-684.	3.9	20

#	Article	IF	CITATIONS
37	Suitability of Agâ€agar gel for the microâ€extraction of organic dyes on different substrates: the case study of wool, silk, printed cotton and a panel painting mockâ€up. Journal of Raman Spectroscopy, 2014, 45, 1133-1139.	2.5	34
38	Photoacoustic excitation profiles of gold nanoparticles. Photoacoustics, 2014, 2, 47-53.	7.8	37
39	Binding energy determination in a π-stacked aromatic cluster: the anisole dimer. Physical Chemistry Chemical Physics, 2013, 15, 11268.	2.8	14
40	SERS detection of red organic dyes in Agâ€agar gel. Journal of Raman Spectroscopy, 2013, 44, 47-54.	2.5	81
41	Noncovalent Interactions in the Gas Phase: The Anisole–Phenol Complex. Journal of Physical Chemistry A, 2011, 115, 9603-9611.	2.5	38
42	Photoelectron imaging as a tool in photoionization studies. Journal of Molecular Structure, 2011, 993, 510-515.	3.6	3
43	Laser sources for efficient two-step Positronium excitation to Rydberg states. Journal of Molecular Structure, 2011, 993, 495-499.	3.6	3
44	Excitonic coupling in van der waals complexes: The anisole dimers. Journal of Molecular Structure, 2011, 993, 491-494.	3.6	9
45	Integrated experimental and computational spectroscopy study on π-stacking interaction: the anisole dimer. Physical Chemistry Chemical Physics, 2010, 12, 13547.	2.8	24
46	The Gas Phase Anisole Dimer: A Combined High-Resolution Spectroscopy and Computational Study of a Stacked Molecular System. Journal of Physical Chemistry A, 2009, 113, 14343-14351.	2.5	52
47	High resolution electronic spectroscopy on deuterated anisole. Journal of Molecular Structure, 2009, 924-926, 457-460.	3.6	12
48	Versatile pulsed laser setup for depth profiling analysis of multilayered samples in the field of cultural heritage. Journal of Molecular Structure, 2009, 924-926, 420-426.	3.6	17
49	Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 525-531.	3.9	143
50	trans-Formanilide: On the properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si67.gif" display="inline" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><r state from high resolution electronic spectroscopy and ab initio calculations. Chemical Physics</r </mml:mrow></mml:msub></mml:mrow></mml:math 	nml:m2n6>1<)	/mr əl: mn>
51	Letters, 2009, 475, 30-33. New Insights on the Photodissociation of <i>N</i> Methylpyrrole: The Role of Stereoelectronic Effects. Journal of Physical Chemistry A, 2009, 113, 14554-14558.	2.5	16
52	A new compact instrument for Raman, laser-induced breakdown, and laser-induced fluorescence spectroscopy of works of art and their constituent materials. Review of Scientific Instruments, 2009, 80, 076109.	1.3	34
53	Microâ€Raman and fluorescence spectroscopy for the assessment of the effects of the exposure to light on films of egg white and egg yolk. Journal of Raman Spectroscopy, 2008, 39, 307-313.	2.5	37
54	Microsolvation in molecular complexes. Physica Scripta, 2008, 78, 058109.	2.5	2

#	Article	IF	CITATIONS
55	Photodetachment and dissociation dynamics of microsolvated iodide clusters. Physica Scripta, 2008, 78, 058110.	2.5	3
56	On the properties of microsolvated molecules in the ground (S) and excited (S1) states: The anisole-ammonia 1:1 complex. Journal of Chemical Physics, 2007, 127, 144303.	3.0	35
57	Isotopomeric Conformational Changes in the Anisoleâ^'Water Complex:Â New Insights from HR-UV Spectroscopy and Theoretical Studiesâ€. Journal of Physical Chemistry A, 2007, 111, 12363-12371.	2.5	29
58	The anisole–ammonia complex: Marks of the intermolecular interactions. Chemical Physics Letters, 2007, 434, 25-30.	2.6	18
59	The aniline–water and aniline–methanol complexes in the S1 excited state. Chemical Physics, 2006, 330, 138-145.	1.9	25
60	Dissociative photodetachment dynamics of the iodide-aniline cluster. Journal of Chemical Physics, 2006, 125, 133309.	3.0	11
61	Photoacoustic measurement of lutein in biological matrix. European Physical Journal Special Topics, 2005, 125, 825-828.	0.2	6
62	<title>A combined Raman-LIBS spectrometer: toward a mobile atomic and molecular analytical tool for in situ applications</title> .,2005,,.		6
63	Structural Determinations and Dynamics on Floppy Molecular Systems. AIP Conference Proceedings, 2005, , .	0.4	0
64	Variable gain detection strategy for time-of-flight multiphoton ionization spectroscopy experiments. Review of Scientific Instruments, 2005, 76, 113105.	1.3	8
65	Dissociative Photodetachment Dynamics of Solvated Iodine Cluster Anions. Journal of Physical Chemistry A, 2005, 109, 11781-11792.	2.5	20
66	A study on the anisole–water complex by molecular beam–electronic spectroscopy and molecular mechanics calculations. Journal of Chemical Physics, 2004, 120, 5601-5607.	3.0	47
67	Vibrational predissociation dynamics of the aniline–neon Van der Waals complex: an ab initio study. Chemical Physics, 2004, 303, 143-150.	1.9	4
68	High resolution molecular beam spectroscopy of low frequency vibronic bands of the S1â† S O electronic transition of 1,3-benzodioxole. Chemical Physics Letters, 2004, 385, 304-308.	2.6	10
69	Dynamics of vibronically excited states of the aniline–neon van der Waals complex: vibrational predissociation versus intramolecular vibrational redistribution. Chemical Physics Letters, 2004, 390, 29-34.	2.6	4
70	The anomeric effect in 1,3-benzodioxole: additional evidence from the rotational, vibration–rotation and rovibronic spectra. Physical Chemistry Chemical Physics, 2004, 6, 5469-5475.	2.8	14
71	New Insight into the Peroxidaseâ^'Hydroxamic Acid Interaction Revealed by the Combination of Spectroscopic and Crystallographic Studies. Biochemistry, 2003, 42, 14066-14074.	2.5	22
72	A study on the anisole–carbon dioxide van der Waals complex by high resolution electronic spectroscopy. Physical Chemistry Chemical Physics, 2002, 4, 5590-5593.	2.8	16

#	Article	IF	CITATIONS
73	Differential Activity and Structure of Highly Similar Peroxidases. Spectroscopic, Crystallographic, and Enzymatic Analyses of Lignifying Arabidopsis thaliana Peroxidase A2 and Horseradish Peroxidase A2,. Biochemistry, 2001, 40, 11013-11021.	2.5	90
74	The high resolution spectrum of the S1â† 5 0 transition of anisole. Physical Chemistry Chemical Physics, 2001, 3, 1407-1410.	2.8	51
75	Vibrational spectrum of 4-fluoraniline. Journal of Molecular Structure, 2001, 565-566, 421-425.	3.6	39
76	Rotationally resolved electronic spectroscopy of aniline excited vibronic levels. Chemical Physics Letters, 2001, 335, 195-200.	2.6	5
77	Potential coupling of intramolecular to intermolecular modes: an ab initio study of the amino inversion and van der Waals motions in the aniline–argon complex. Chemical Physics, 2001, 269, 29-36.	1.9	11
78	NH2 inversion potential in the SO and S1 electronic states of aniline: fit to the (ro-)vibrational data and comparison with ab initio and density functional results. Chemical Physics Letters, 2000, 327, 45-53.	2.6	27
79	The jet-cooled S0→S1 excitation spectrum of 1,6-epoxy-[10]annulene. Chemical Physics Letters, 2000, 330, 315-324.	2.6	2
80	Large amplitude motions in the electronic ground state of 4-fluoroaniline. Physical Chemistry Chemical Physics, 2000, 2, 1351-1355.	2.8	6
81	Vibrational predissociation dynamics in the vibronic states of the aniline–neon van der Waals complex: New features revealed by complementary spectroscopic approaches. Journal of Chemical Physics, 1999, 110, 9961-9970.	3.0	22
82	High resolution electronic spectroscopy of 4-fluoroaniline in a molecular beam: new experimental results and their interpretation in terms of molecular geometry. Journal of Molecular Structure, 1999, 480-481, 269-272.	3.6	2
83	The aniline–argon van der Waals complex: ab initio second-order MÃ,ller–Plesset study of the potential energy surface in the ground electronic state. Chemical Physics, 1999, 249, 113-120.	1.9	20
84	Peroxidase-benzhydroxamic acid complexes: spectroscopic evidence that a Fe-H2O distance of 2.6 à can correspond to hexa-coordinate high-spin heme. Journal of Biological Inorganic Chemistry, 1999, 4, 39-47.	2.6	30
85	Inversion Motion and S1Equilibrium Geometry of 4-Fluoroaniline:Â Molecular Beam High-Resolution Spectroscopy and ab Initio Calculations. Journal of Physical Chemistry A, 1999, 103, 8946-8951.	2.5	16
86	Accuracy of remote sensing of water temperature by Raman spectroscopy. Applied Optics, 1999, 38, 928.	2.1	35
87	Vibration-rotation Raman spectrum of13C-containing acetylene. Journal of Raman Spectroscopy, 1998, 29, 237-241.	2.5	8
88	High resolution Raman study of phonon and vibron bandwidths in isotopically pure and natural benzene crystal. Journal of Chemical Physics, 1998, 109, 5469-5480.	3.0	16
89	Vibrational spectrum of 1,1,1-trifluoroethane. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2909-2912.	1.7	6
90	High-resolution spectroscopy of 4-fluorostyrene-rare gas van der Waals complexes: Results and comparison with theoretical calculations. Journal of Chemical Physics, 1998, 108, 1836-1850.	3.0	17

#	Article	IF	CITATIONS
91	High resolution optothermal spectroscopy of pyridine in the S1 state. Journal of Chemical Physics, 1997, 107, 10399-10405.	3.0	21
92	Optothermal spectroscopy of the dissociating lowest electronic singlet states of s-tetrazine and dimethyl-s-tetrazine in a molecular beam. Journal of Chemical Physics, 1997, 106, 1318-1325.	3.0	13
93	Mode Assignment of Sulfur α-S8 by Polarized Raman and FTIR Studies at Low Temperatures. Journal of Physical Chemistry B, 1997, 101, 2132-2137.	2.6	34
94	Optothermal detection of non-radiative excited states of aromatic molecules in a molecular beam. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 105, 109-113.	3.9	1
95	Raman spectroscopic study of pure p-terphenyl and tetracene:p-terphenyl doped crystals. Solid State Ionics, 1997, 97, 115-121.	2.7	16
96	High resolution spectroscopy of the S1 ↕S0 electronic transition of 4-fluorostyrene in a molecular beam. Journal of Molecular Structure, 1997, 410-411, 59-63.	3.6	0
97	Order-disorder phase transition in p-terphenyl and p-terphenyl: tetracene doped crystals as studied by Raman spectroscopy. Journal of Molecular Structure, 1997, 416, 69-73.	3.6	7
98	High-resolution spectroscopy of aniline-rare gas Van der Waals complexes: results and comparison with theoretical predictions. Chemical Physics Letters, 1996, 260, 87-94.	2.6	33
99	Molecular Beam Spectroscopy ofS1Aniline: Assignments for the 000, 6a10,I20, and 110Rovibronic Bands. Journal of Molecular Spectroscopy, 1996, 177, 74-78.	1.2	29
100	High-resolution absorption, excitation, and microwave-UV double resonance spectroscopy on a molecular beam: S1 aniline. Chemical Physics, 1995, 199, 263-273.	1.9	45
101	Phonon dynamics and relaxation processes in isotopically pure 35Cl2 and natural crystalline chlorine. Journal of Chemical Physics, 1995, 102, 9191-9196.	3.0	4
102	Reinvestigation of the 2v ₁ Band in Trifluoropropyne using a Frequency Stabilized 1.5 μm Color Center Laser in Conjunction with a Laser Field Buildâ€up Cavity. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 548-554.	0.9	9
103	Molecular beam infrared spectroscopy and intramolecular dynamics of SF5CCH in the region of the fundamental and first overtone of the acetylenic CH stretch. Chemical Physics, 1994, 187, 11-19.	1.9	6
104	Raman linewidths in ferroelectric NaNO2. Chemical Physics, 1994, 187, 263-273.	1.9	3
105	Vibrational Raman spectroscopy of solid benzene : hexafluorobenzene. Chemical Physics, 1993, 177, 191-202.	1.9	5
106	Non-diamond carbon phases in plasma-assisted deposition of crystalline diamond films: a Raman study. Diamond and Related Materials, 1993, 2, 1257-1262.	3.9	35
107	Temperature dependence of vibrational relaxation processes in sulfur crystals: Effect of isotopic impurities. Journal of Chemical Physics, 1992, 96, 98-109.	3.0	32
108	High resolution Raman measurements of the temperature variation of the bandwidth of some lattice phonons and of one internal vibron of α-oxalic acid. Journal of Molecular Structure, 1990, 224, 471-482.	3.6	5

#	Article	IF	CITATIONS
109	Investigation of the relaxation dynamics of phonons in NaNO2 by means of high-resolution raman linewidth measurements. Chemical Physics, 1989, 135, 363-373.	1.9	13
110	Spectroscopic evidence of the effect of hydrogen peroxide excess on the coproheme decarboxylase from actinobacterial <scp> <i>Corynebacterium diphtheriae</i> </scp> . Journal of Raman Spectroscopy, 0, , .	2.5	4
111	Probing the Role of Murine Neuroglobin CDloop–D-Helix Unit in CO Ligand Binding and Structural Dynamics. ACS Chemical Biology, 0, , .	3.4	2