Gloria Gallego-Ferrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3558019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osteogenic differentiation of human mesenchymal stem cells on substituted calcium phosphate/chitosan composite scaffold. Carbohydrate Polymers, 2022, 277, 118883.	5.1	26
2	Novel microgel culture system as semi-solid three-dimensional in vitro model for the study of multiple myeloma proliferation and drug resistance. , 2022, 135, 212749.		7
3	Effect of metal ions on the physical properties of multilayers from hyaluronan and chitosan, and the adhesion, growth and adipogenic differentiation of multipotent mouse fibroblasts. Soft Matter, 2021, 17, 8394-8410.	1.2	7
4	Effective elastin-like recombinamers coating on poly(vinylidene) fluoride membranes for mesenchymal stem cell culture. European Polymer Journal, 2021, 146, 110269.	2.6	3
5	Borax-loaded injectable alginate hydrogels promote muscle regeneration in vivo after an injury. Materials Science and Engineering C, 2021, 123, 112003.	3.8	10
6	PCL-Coated Multi-Substituted Calcium Phosphate Bone Scaffolds with Enhanced Properties. Materials, 2021, 14, 4403.	1.3	4
7	Biomimetic 3D Environment Based on Microgels as a Model for the Generation of Drug Resistance in Multiple Myeloma. Materials, 2021, 14, 7121.	1.3	6
8	A cellâ€free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1428-1438.	1.6	5
9	Poly(vinylidene) fluoride membranes coated by heparin/collagen layer-by-layer, smart biomimetic approaches for mesenchymal stem cell culture. Materials Science and Engineering C, 2020, 117, 111281.	3.8	22
10	In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go?. International Journal of Molecular Sciences, 2020, 21, 5747.	1.8	16
11	Hyaluronic acid — gelatin hydrogels as bioelectrets: Charge transport and dielectric polarization effects. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 1387-1394.	1.8	2
12	Synthesis and Characterization of Oxidized Polysaccharides for In Situ Forming Hydrogels. Biomolecules, 2020, 10, 1185.	1.8	30
13	Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid – Gelatin injectable hydrogels. Bioelectrochemistry, 2020, 134, 107536.	2.4	23
14	Freeze-extraction microporous electroactive supports for cell culture. European Polymer Journal, 2019, 119, 531-540.	2.6	4
15	Water dynamics and thermal properties of tyramine-modified hyaluronic acid - Gelatin hydrogels. Polymer, 2019, 178, 121598.	1.8	7
16	Dynamics of hydration water in gelatin and hyaluronic acid hydrogels. European Physical Journal E, 2019, 42, 109.	0.7	12
17	Biomimetic microspheres for 3D mesenchymal stem cell culture and characterization. Colloids and Surfaces B: Biointerfaces, 2019, 177, 68-76.	2.5	19
18	Tissue Engineering: Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks (Adv. Healthcare Mater. 3/2019). Advanced Healthcare Materials, 2019, 8, 1970010.	3.9	5

GLORIA GALLEGO-FERRER

#	Article	IF	CITATIONS
19	Capacitively coupled electrical stimulation of rat chondroepiphysis explants: A histomorphometric analysis. Bioelectrochemistry, 2019, 126, 1-11.	2.4	11
20	Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Advanced Healthcare Materials, 2019, 8, e1801469.	3.9	15
21	Bone-Mimicking Injectable Celatine/Hydroxyapatite Hydrogels. Chemical and Biochemical Engineering Quarterly, 2019, 33, 325-335.	0.5	5
22	Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells. Carbohydrate Polymers, 2018, 197, 469-477.	5.1	59
23	Osteogenic differentiation of mesenchymal stem cells using hybrid nanofibers with different configurations and dimensionality. Journal of Biomedical Materials Research - Part A, 2017, 105, 2065-2074.	2.1	14
24	Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system. Carbohydrate Polymers, 2017, 166, 173-182.	5.1	71
25	Chitosan patterning on titanium implants. Progress in Organic Coatings, 2017, 111, 23-28.	1.9	21
26	Emulsion based microencapsulation of proteins in poly(L-lactic acid) films and membranes for the controlled release of drugs. Polymer Degradation and Stability, 2017, 146, 24-33.	2.7	5
27	Hybrid Protein–Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation. ACS Omega, 2017, 2, 7609-7620.	1.6	39
28	Tailoring Bulk and Surface Composition of Polylactides for Application in Engineering of Skeletal Tissues. Advances in Polymer Science, 2017, , 79-108.	0.4	5
29	Extracellular matrix–inspired gelatin/hyaluronic acid injectable hydrogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 280-288.	1.8	37
30	Human Mesenchymal Stem Cells Differentiation Regulated by Hydroxyapatite Content within Chitosan-Based Scaffolds under Perfusion Conditions. Polymers, 2017, 9, 387.	2.0	21
31	Gelatin—Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation. Macromolecular Bioscience, 2016, 16, 1311-1324.	2.1	54
32	Differentiation of Human Mesenchymal Stem Cells Toward Quality Cartilage Using Fibrinogenâ€Based Nanofibers. Macromolecular Bioscience, 2016, 16, 1348-1359.	2.1	14
33	Role of chemical crosslinking in material-driven assembly of fibronectin (nano)networks: 2D surfaces and 3D scaffolds. Colloids and Surfaces B: Biointerfaces, 2016, 148, 324-332.	2.5	9
34	Local deformation in a hydrogel induced by an external magnetic field. Journal of Materials Science, 2016, 51, 9979-9990.	1.7	6
35	Macroporous poly(lactic acid) construct supporting the osteoinductive porous chitosan-based hydrogel for bone tissue engineering. Polymer, 2016, 98, 172-181.	1.8	48
36	Prediction of the "in vivo―mechanical behavior of biointegrable acrylic macroporous scaffolds. Materials Science and Engineering C, 2016, 61, 651-658.	3.8	1

#	Article	IF	CITATIONS
37	In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds. Annals of Biomedical Engineering, 2016, 44, 1107-1119.	1.3	19
38	Implantation of a Polycaprolactone Scaffold with Subchondral Bone Anchoring Ameliorates Nodules Formation and Other Tissue Alterations. International Journal of Artificial Organs, 2015, 38, 659-666.	0.7	16
39	An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. Journal of Biomechanics, 2015, 48, 1310-1317.	0.9	27
40	Engineering Interpenetrating Polymer Networks of Poly(2-Hydroxyethyl Acrylate) asEx VivoPlatforms for Articular Cartilage Regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 745-754.	1.8	4
41	Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 2015, 68, 278-287.	2.6	34
42	Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production. Macromolecular Materials and Engineering, 2015, 300, 977-988.	1.7	22
43	Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 48, 60-69.	1.5	56
44	Injectable composites of loose microfibers and gelatin with improved interfacial interaction for soft tissue engineering. Polymer, 2015, 74, 224-234.	1.8	11
45	Bioactive organic–inorganic poly(CLMA-co-HEA)/silica nanocomposites. Journal of Biomaterials Applications, 2015, 29, 1096-1108.	1.2	4
46	Epoxy networks and hydrogels prepared from α,ï‰-diamino terminated poly(oxypropylene)-b-poly(oxyethylene)-b-poly(oxypropylene) and polyoxypropylene bis(glycidyl ether). European Polymer Journal, 2015, 62, 19-30.	2.6	6
47	Crosslinked fibrin gels for tissue engineering: Two approaches to improve their properties. Journal of Biomedical Materials Research - Part A, 2015, 103, 614-621.	2.1	36
48	Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model. Journal of Biomedical Materials Research - Part A, 2015, 103, 1106-1118.	2.1	31
49	PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity. Materials Science and Engineering C, 2014, 34, 437-445.	3.8	103
50	Computational analysis of cartilage implants based on an interpenetrated polymer network for tissue repairing. Computer Methods and Programs in Biomedicine, 2014, 116, 249-259.	2.6	11
51	Nanostructured Polymeric Coatings Based on Chitosan and Dopamineâ€Modified Hyaluronic Acid for Biomedical Applications. Small, 2014, 10, 2459-2469.	5.2	163
52	Combination of silica nanoparticles with hydroxyapatite reinforces poly (<scp> </scp> -lactide acid) scaffolds without loss of bioactivity. Journal of Bioactive and Compatible Polymers, 2014, 29, 15-31.	0.8	11
53	An "in vitro―experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 125-131.	1.5	22
54	Evolution of the properties of a poly(<scp>l</scp> â€lactic acid) scaffold with double porosity during <i>in vitro</i> degradation in a phosphateâ€buffered saline solution. Journal of Applied Polymer Science, 2014, 131, .	1.3	16

#	Article	IF	CITATIONS
55	PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: In vitro cell culture studies. Materials Science and Engineering C, 2014, 42, 264-272.	3.8	63
56	Fibrin hitosan composite substrate for <i>in vitro</i> culture of chondrocytes. Journal of Biomedical Materials Research - Part A, 2013, 101A, 404-412.	2.1	3
57	Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 1737-1750.	2.3	41
58	Computational Methodology to Determine Fluid Related Parameters of Non Regular Three-Dimensional Scaffolds. Annals of Biomedical Engineering, 2013, 41, 2367-2380.	1.3	23
59	Glass Transition and Water Dynamics in Hyaluronic Acid Hydrogels. Food Biophysics, 2013, 8, 192-202.	1.4	21
60	Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(<scp>L</scp> â€lactic acid) scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 173-186.	1.6	61
61	Improved regeneration of articular cartilage by human mesenchymal stem cells through osteoclasts and BMP2 signaling. Osteoarthritis and Cartilage, 2013, 21, S116.	0.6	1
62	Chondrocytes Cultured in an Adhesive Macroporous Scaffold Subjected to Stirred Flow Bioreactor Behave Like in Static Culture. Journal of Biomaterials and Tissue Engineering, 2013, 3, 312-319.	0.0	8
63	Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. Journal of Non-Crystalline Solids, 2012, 358, 3141-3149.	1.5	46
64	Structure and properties of epoxy/polyaniline nanocomposites. Journal of Non-Crystalline Solids, 2012, 358, 414-419.	1.5	7
65	<i>InÂvitro</i> 3D culture of human chondrocytes using modified ε -caprolactone scaffolds with varying hydrophilicity and porosity. Journal of Biomaterials Applications, 2012, 27, 299-309.	1.2	17
66	Cooperative Segmental Motions in Ethyl Acrylate/Triethylene Glycol Dimethacrylate Copolymer Networks Studied by Dielectric Techniques. Macromolecules, 2011, 44, 8233-8244.	2.2	4
67	Structure and biological response of polymer/silica nanocomposites prepared by sol–gel technique. Composites Science and Technology, 2010, 70, 1789-1795.	3.8	10
68	Hydroxyapatite formation from cuttlefish bones: kinetics. Journal of Materials Science: Materials in Medicine, 2010, 21, 2711-2722.	1.7	65
69	Effect of the silica content on the physico-chemical and relaxation properties of hybrid polymer/silica nanocomposites of P(EMA-co-HEA). European Polymer Journal, 2010, 46, 910-917.	2.6	27
70	Synthesis and characterization of poly(EMA-co-HEA)/SiO2 nanohybrids. European Polymer Journal, 2010, 46, 1446-1455.	2.6	15
71	Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(l-lactide) $\hat{a} \in Hybrid$ membranes. Composites Science and Technology, 2010, 70, 1805-1812.	3.8	48
72	Influence of the nature of the porous confining network on the sorption, diffusion and mechanical properties of hydrogel IPNs. European Polymer Journal, 2010, 46, 774-782.	2.6	14

#	Article	IF	CITATIONS
73	Mimicking Natural Dentin Using Bioactive Nanohybrid Scaffolds for Dentinal Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 2783-2793.	1.6	21
74	Bioactive scaffolds mimicking natural dentin structure. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 182-194.	1.6	27
75	Preparation of highly porous hydroxyapatite from cuttlefish bone. Journal of Materials Science: Materials in Medicine, 2009, 20, 1039-1046.	1.7	71
76	Biomimetic apatite coating on P(EMA-co-HEA)/SiO2 hybrid nanocomposites. Polymer, 2009, 50, 2874-2884.	1.8	36
77	Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid?. Colloids and Surfaces B: Biointerfaces, 2009, 70, 218-225.	2.5	21
78	Nanodomains in a hydrophilic–hydrophobic IPN based on poly(2-hydroxyethyl acrylate) and poly(ethyl) Tj ETQo	0 0 0 rgB ⁻	Г /Qyerlock 1
	Effect of hydrophilicity on the properties of a degradable polylastide Journal of Delymer Science		

79	Effect of hydrophilicity on the properties of a degradable polylactide. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 656-664.	2.4	14
80	Poly(2-hydroxyethyl acrylate) hydrogel confined in a hydrophobous porous matrix. Colloid and Polymer Science, 2005, 283, 681-690.	1.0	17
81	Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 2005, 16, 693-698.	1.7	44
82	Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science, 2005, 40, 4881-4887.	1.7	31
83	Thermodynamical analysis of the hydrogel state in poly(2-hydroxyethyl acrylate). Polymer, 2004, 45, 6207-6217.	1.8	20
84	αâ^'β Splitting Region in the Dielectric Relaxation Spectrum of PEA-PEMA Sequential IPNs. Macromolecules, 2004, 37, 446-452.	2.2	8
85	Thermodynamics and statistical mechanics of multilayer adsorption. Journal of Chemical Physics, 2004, 121, 8524.	1.2	37
86	Porous poly(2-hydroxyethyl acrylate) hydrogels prepared by radical polymerisation with methanol as diluent. Polymer, 2004, 45, 8949-8955.	1.8	47
87	Influence of the Hydrophobic Phase on the Thermal Transitions of Water Sorbed in a Polymer Hydrogel Based on Interpenetration of a Hydrophilic and a Hydrophobic Network. Macromolecules, 2003, 36, 860-866.	2.2	28
88	Thermodynamics of water sorption in acrylic homonetworks and IPNs. Macromolecular Symposia, 2003, 200, 217-226.	0.4	4
89	Hydrophilic sponges based on poly(hydroxyethyl acrylate). Journal of Non-Crystalline Solids, 2001, 287, 130-134.	1.5	9
90	Miscibility of Poly(butyl acrylate)â^'Poly(butyl methacrylate) Sequential Interpenetrating Polymer Networks. Macromolecules, 2001, 34, 5525-5534.	2.2	33

GLORIA GALLEGO-FERRER

#	Article	IF	CITATIONS
91	Dielectric and dynamic mechanical studies on homogeneous PBA/PBMA interpenetrating polymer networks. Macromolecular Symposia, 2001, 171, 151-162.	0.4	4
92	Interaction between water and polymer chains in poly(hydroxyethyl acrylate) hydrogels. Colloid and Polymer Science, 2001, 279, 323-330.	1.0	62
93	Forced compatibility in poly(methyl acrylate)/poly(methyl methacrylate) sequential interpenetrating polymer networks. Polymer, 2001, 42, 10071-10075.	1.8	46
94	Porous poly(2-hydroxyethyl acrylate) hydrogels. Polymer, 2001, 42, 4667-4674.	1.8	74
95	BLENDS OF STYRENE-BUTADIENE-STYRENE TRIBLOCK COPOLYMER AND ISOTACTIC POLYPROPYLENE. REINFORCING EFFECT OF POLYPROPYLENE AT HIGH TEMPERATURES. Journal of Macromolecular Science - Physics, 2001, 40, 443-455.	0.4	1
96	Blends of styrene-butadiene-styrene triblock copolymer and isotactic polypropylene: morphology and thermomechanical properties. Polymer International, 2000, 49, 853-859.	1.6	24
97	Structure–property relationships for cyanurate-containing, full interpenetrating polymer networks. Polymer, 2000, 41, 4699-4707.	1.8	14
98	Processing conditions and compatibilizing effects on reinforcement of polypropylene-liquid crystalline polymer blends. Polymer Composites, 2000, 21, 84-95.	2.3	12
99	Poly(methyl acrylate)/poly(hydroxyethyl acrylate) sequential interpenetrating polymer networks. Miscibility and water sorption behavior. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1587-1599.	2.4	40
100	Swelling and thermally stimulated depolarization currents in hydrogels formed by interpenetrating polymer networks. Journal of Non-Crystalline Solids, 1998, 235-237, 692-696.	1.5	25