
Andreas Deistung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3557582/publications.pdf Version: 2024-02-01

ANDREAS DEISTUNC

#	Article	IF	CITATIONS
1	Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias. Brain Communications, 2022, 4, fcab306.	1.5	15
2	Investigation of biases in convolutional neural networks for semantic segmentation using performance sensitivity analysis. Zeitschrift Fur Medizinische Physik, 2022, 32, 346-360.	0.6	2
3	Motor trainingâ€related brain reorganization in patients with cerebellar degeneration. Human Brain Mapping, 2022, 43, 1611-1629.	1.9	4
4	Magnetic susceptibility anisotropy in normal appearing white matter in multiple sclerosis from single-orientation acquisition. NeuroImage: Clinical, 2022, 35, 103059.	1.4	1
5	Characterization of microparticles of iron oxide for magnetic resonance imaging. Magnetic Resonance Imaging, 2022, 92, 67-81.	1.0	Ο
6	Quantitative susceptibility mapping in ischemic stroke patients after successful recanalization. Scientific Reports, 2021, 11, 16038.	1.6	3
7	Brain Structure and Degeneration Staging in Friedreich Ataxia: <scp>Magnetic Resonance Imaging</scp> Volumetrics from the <scp>ENIGMAâ€Ataxia</scp> Working Group. Annals of Neurology, 2021, 90, 570-583.	2.8	27
8	In vivo assessment of anisotropy of apparent magnetic susceptibility in white matter from a single orientation acquisition. NeuroImage, 2021, 241, 118442.	2.1	6
9	Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping. Science Advances, 2020, 6, .	4.7	65
10	Safety and effectiveness of percutaneous sclerotherapy for venous disorders of the labia majora in patients with vascular malformations. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 2020, 8, 1083-1089.	0.9	3
11	A new framework for assessing subject-specific whole brain circulation and perfusion using MRI-based measurements and a multi-scale continuous flow model. PLoS Computational Biology, 2019, 15, e1007073.	1.5	24
12	Characterization of Iron Accumulation in Deep Gray Matter in Myotonic Dystrophy Type 1 and 2 Using Quantitative Susceptibility Mapping and R2* Relaxometry: A Magnetic Resonance Imaging Study at 3 Tesla. Frontiers in Neurology, 2019, 10, 1320.	1.1	10
13	Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network. Zeitschrift Fur Medizinische Physik, 2019, 29, 128-138.	0.6	17
14	Microvessels may Confound the "Swallow Tail Sign―in Normal Aged Midbrains: A Postmortem 7 T SWâ€MRI Study. Journal of Neuroimaging, 2019, 29, 65-69.	1.0	14
15	Vascular and Tissue Changes of Magnetic Susceptibility in the Mouse Brain After Transient Cerebral Ischemia. Translational Stroke Research, 2018, 9, 426-435.	2.3	17
16	Changes of deep gray matter magnetic susceptibility over 2 years in multiple sclerosis and healthy control brain. Neurolmage: Clinical, 2018, 18, 1007-1016.	1.4	32
17	Quantitative susceptibility mapping (QSM) and R2* in the human brain at 3 T. Zeitschrift Fur Medizinische Physik, 2018, 28, 36-48.	0.6	58
18	The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study. NeuroImage, 2018, 179, 117-133.	2.1	129

#	Article	IF	CITATIONS
19	A comprehensive numerical analysis of background phase correction with Vâ€&HARP. NMR in Biomedicine, 2017, 30, e3550.	1.6	65
20	An improved FSL-FIRST pipeline for subcortical gray matter segmentation to study abnormal brain anatomy using quantitative susceptibility mapping (QSM). Magnetic Resonance Imaging, 2017, 39, 110-122.	1.0	36
21	Towards multi-scale personalized modeling of brain vasculature based on magnetic resonance image processing. , 2017, , .		4
22	Overview of quantitative susceptibility mapping. NMR in Biomedicine, 2017, 30, e3569.	1.6	228
23	Quantitative Susceptibility Mapping Indicates a Disturbed Brain Iron Homeostasis in Neuromyelitis Optica – A Pilot Study. PLoS ONE, 2016, 11, e0155027.	1.1	7
24	Simulation of MR angiography imaging for validation of cerebral arteries segmentation algorithms. Computer Methods and Programs in Biomedicine, 2016, 137, 293-309.	2.6	21
25	Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM). Zeitschrift Fur Medizinische Physik, 2016, 26, 6-34.	0.6	106
26	Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1614-1624.	2.4	29
27	Structural and Functional Magnetic Resonance Imaging of the Cerebellum: Considerations for Assessing Cerebellar Ataxias. Cerebellum, 2016, 15, 21-25.	1.4	29
28	Susceptibility Sensitive Magnetic Resonance Imaging Displays Pallidofugal and Striatonigral Fiber Tracts. Operative Neurosurgery, 2016, 12, 330-338.	0.4	10
29	Quantitative Susceptibility Mapping in Parkinson's Disease. PLoS ONE, 2016, 11, e0162460.	1.1	184
30	SHARP edges: Recovering cortical phase contrast through harmonic extension. Magnetic Resonance in Medicine, 2015, 73, 851-856.	1.9	26
31	Automated modeling of tubular blood vessels in 3D MR angiography images. , 2015, , .		11
32	Susceptibility-Weighted Imaging Provides Insight into White Matter Damage in Amyotrophic Lateral Sclerosis. PLoS ONE, 2015, 10, e0131114.	1.1	15
33	Brain iron quantification by MRI in mitochondrial membrane proteinâ€associated neurodegeneration under ironâ€chelating therapy. Annals of Clinical and Translational Neurology, 2014, 1, 1041-1046.	1.7	23
34	Toward online reconstruction of quantitative susceptibility maps: Superfast dipole inversion. Magnetic Resonance in Medicine, 2013, 69, 1581-1593.	1.9	139
35	Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2âŽ-imaging at ultra-high magnetic field strength. NeuroImage, 2013, 65, 299-314.	2.1	382
36	Quantitative Susceptibility Mapping Differentiates between Blood Depositions and Calcifications in Patients with Glioblastoma. PLoS ONE, 2013, 8, e57924.	1.1	137

ANDREAS DEISTUNG

#	Article	IF	CITATIONS
37	Longitudinal Assessment of Amyloid Pathology in Transgenic ArcAÎ ² Mice Using Multi-Parametric Magnetic Resonance Imaging. PLoS ONE, 2013, 8, e66097.	1.1	38
38	Impact of tissue atrophy on high-pass filtered MRI signal phase-based assessment in large-scale group-comparison studies: a simulation study. Frontiers in Physics, 2013, 1, .	1.0	3
39	High-Resolution MR Imaging of the Human Brainstem In vivo at 7 Tesla. Frontiers in Human Neuroscience, 2013, 7, 710.	1.0	88
40	Comparison of Susceptibility Weighted Imaging and TOF-Angiography for the Detection of Thrombi in Acute Stroke. PLoS ONE, 2013, 8, e63459.	1.1	48
41	Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage, 2012, 62, 1593-1599.	2.1	615
42	Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain. NeuroImage, 2012, 62, 2083-2100.	2.1	219
43	Detection of Cerebral Microbleeds with Quantitative Susceptibility Mapping in the Arcabeta Mouse Model of Cerebral Amyloidosis. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2282-2292.	2.4	74
44	Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism?. NeuroImage, 2011, 54, 2789-2807.	2.1	620
45	Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Medical Physics, 2010, 37, 5165-5178.	1.6	207
46	Arteries tracking in simultaneous TOF-SWI MR images: image characteristics and preliminary results. , 2009, , .		1
47	Correction of venous contamination in time-of-flight MR angiography by using magnetic susceptibility maps. , 2009, , .		0
48	ToF‣WI: Simultaneous time of flight and fully flow compensated susceptibility weighted imaging. Journal of Magnetic Resonance Imaging, 2009, 29, 1478-1484.	1.9	67
49	Improved elimination of phase effects from background field inhomogeneities for susceptibility weighted imaging at high magnetic field strengths. Magnetic Resonance Imaging, 2008, 26, 1145-1151.	1.0	37
50	Susceptibility weighted imaging at ultra high magnetic field strengths: Theoretical considerations and experimental results. Magnetic Resonance in Medicine, 2008, 60, 1155-1168.	1.9	148
51	Investigation of the influence of carbon dioxide concentrations on cerebral physiology by susceptibility-weighted magnetic resonance imaging (SWI). NeuroImage, 2008, 43, 36-43.	2.1	56
52	A robust optical respiratory trigger for small rodents in clinical whole-body MR systems / Ein robuster optischer Atemtrigger für KleinsÃ ¤ ger in klinischen Ganzkörper-MR-Scannern. Biomedizinische Technik, 2008, 53, 138-144.	0.9	4
53	GUIBOLD: A Graphical User Interface for Image Reconstruction and Data Analysis in Susceptibility-weighted MR Imaging. Radiographics, 2008, 28, 639-651.	1.4	10
54	Detection of multiple intracranial hemorrhages in a child with acute lymphocytic leukemia (ALL) by susceptibility weighted imaging (SWI). Radiology Case Reports, 2007, 2, 135.	0.2	2

#	Article	IF	CITATIONS
55	Susceptibility Weighted Imaging: Data Acquisition, Image Reconstruction and Clinical Applications. Zeitschrift Fur Medizinische Physik, 2006, 16, 240-250.	0.6	44
56	Demonstration of paramagnetic and diamagnetic cerebral lesions by using susceptibility weighted phase imaging (SWI). Zeitschrift Fur Medizinische Physik, 2006, 16, 261-267.	0.6	55