Xuexi Tie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3557123/publications.pdf Version: 2024-02-01

XUEVI TIE

#	Article	IF	CITATIONS
1	A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	848
2	Atmospheric New Particle Formation Enhanced by Organic Acids. Science, 2004, 304, 1487-1490.	12.6	716
3	Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8657-8666.	7.1	609
4	Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmospheric Environment, 2010, 44, 5005-5014.	4.1	315
5	Assessment of the global impact of aerosols on tropospheric oxidants. Journal of Geophysical Research, 2005, 110, .	3.3	289
6	Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Science of the Total Environment, 2015, 502, 578-584.	8.0	288
7	Characteristics of heavy aerosol pollution during the 2012–2013 winter in Beijing, China. Atmospheric Environment, 2014, 88, 83-89.	4.1	283
8	Lung cancer mortality and exposure to atmospheric aerosol particles inÂGuangzhou, China. Atmospheric Environment, 2009, 43, 2375-2377.	4.1	277
9	Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China. Atmospheric Environment, 2008, 42, 1424-1435.	4.1	271
10	Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 2013, 11, 34-40.	3.6	260
11	Effect of clouds on photolysis and oxidants in the troposphere. Journal of Geophysical Research, 2003, 108, .	3.3	240
12	Characterizations of ozone, NOx, and VOCs measured in Shanghai, China. Atmospheric Environment, 2008, 42, 6873-6883.	4.1	210
13	A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophysical Research Letters, 2006, 33, .	4.0	207
14	Characterizations of chemical oxidants in Mexico City: A regional chemical dynamical model (WRF-Chem) study. Atmospheric Environment, 2007, 41, 1989-2008.	4.1	198
15	A possible pathway for rapid growth of sulfate during haze days in China. Atmospheric Chemistry and Physics, 2017, 17, 3301-3316.	4.9	193
16	Ozone photochemical production in urban Shanghai, China: Analysis based on ground level observations. Journal of Geophysical Research, 2009, 114, .	3.3	167
17	Effects of aerosols on tropospheric oxidants: A global model study. Journal of Geophysical Research, 2001, 106, 22931-22964.	3.3	165
18	Aerosol pollution in China: Present and future impact on environment. Particuology, 2009, 7, 426-431.	3.6	161

XUEXI TIE

#	Article	IF	CITATIONS
19	Impacts of black carbon aerosol on photolysis and ozone. Journal of Geophysical Research, 2005, 110, .	3.3	158
20	Long-term trend of O3 in a mega City (Shanghai), China: Characteristics, causes, and interactions with precursors. Science of the Total Environment, 2017, 603-604, 425-433.	8.0	152
21	Severe Pollution in China Amplified by Atmospheric Moisture. Scientific Reports, 2017, 7, 15760.	3.3	151
22	Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties. Environmental Science & Technology, 2018, 52, 6825-6833.	10.0	149
23	Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: observations and source attributions. Atmospheric Chemistry and Physics, 2017, 17, 2759-2774.	4.9	138
24	Chemical characterization of air pollution in Eastern China and the Eastern United States. Atmospheric Environment, 2006, 40, 2607-2625.	4.1	134
25	Measurement and modeling of O3 variability in Shanghai, China: Application of the WRF-Chem model. Atmospheric Environment, 2009, 43, 4289-4302.	4.1	132
26	Analysis of ozone and VOCs measured in Shanghai: A case study. Atmospheric Environment, 2007, 41, 989-1001.	4.1	129
27	Aircraft measurements of O3, NOx, CO, VOCs, and SO2 in the Yangtze River Delta region. Atmospheric Environment, 2009, 43, 584-593.	4.1	123
28	Vertical distributions of aerosols under different weather conditions: Analysis of in-situ aircraft measurements in Beijing, China. Atmospheric Environment, 2009, 43, 5526-5535.	4.1	116
29	A budget analysis of the formation of haze in Beijing. Atmospheric Environment, 2015, 100, 25-36.	4.1	106
30	Effect of heavy haze and aerosol pollution on rice and wheat productions in China. Scientific Reports, 2016, 6, 29612.	3.3	103
31	Impact of nocturnal planetary boundary layer on urban air pollutants: Measurements from a 250-m tower over Tianjin, China. Journal of Hazardous Materials, 2009, 162, 264-269.	12.4	85
32	Wintertime secondary organic aerosol formation in Beijing–Tianjin–Hebei (BTH): contributions of HONO sources and heterogeneous reactions. Atmospheric Chemistry and Physics, 2019, 19, 2343-2359.	4.9	83
33	Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau. Journal of Atmospheric Chemistry, 2010, 67, 45-60.	3.2	82
34	Chemical characterization of ozone formation in the Houston-Galveston area: A chemical transport model study. Journal of Geophysical Research, 2004, 109, .	3.3	79
35	Concentration and sources of atmospheric nitrous acid (HONO) at an urban site in Western China. Science of the Total Environment, 2017, 593-594, 165-172.	8.0	75
36	Impact of the 2015 El Nino event on winter air quality in China. Scientific Reports, 2016, 6, 34275.	3.3	74

Xuexi Tie

#	Article	IF	CITATIONS
37	Effect of sulfate aerosol on tropospheric NOxand ozone budgets: Model simulations and TOPSE evidence. Journal of Geophysical Research, 2003, 108, .	3.3	70
38	Characterizations of aerosols over the Beijing region: A case study of aircraft measurements. Atmospheric Environment, 2006, 40, 4513-4527.	4.1	70
39	Impact of crop field burning and mountains on heavy haze in the North China Plain: a case study. Atmospheric Chemistry and Physics, 2016, 16, 9675-9691.	4.9	69
40	Contributions of trans-boundary transport to summertime air quality in Beijing, China. Atmospheric Chemistry and Physics, 2017, 17, 2035-2051.	4.9	69
41	Study of ozone "weekend effect―in Shanghai. Science in China Series D: Earth Sciences, 2008, 51, 1354-1360.	0.9	67
42	Evidence of impact of aerosols on surface ozone concentration in Tianjin, China. Atmospheric Environment, 2007, 41, 4672-4681.	4.1	66
43	Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions. Science of the Total Environment, 2006, 371, 238-251.	8.0	65
44	Contribution of regional transport to the black carbon aerosol during winter haze period in Beijing. Atmospheric Environment, 2016, 132, 11-18.	4.1	64
45	Summertime ozone formation in Xi'an and surrounding areas, China. Atmospheric Chemistry and Physics, 2016, 16, 4323-4342.	4.9	64
46	Impacts of biogenic emissions on photochemical ozone production in Houston, Texas. Journal of Geophysical Research, 2007, 112, .	3.3	62
47	Measurement and model analyses of the ozone variation during 2006 to 2015 and its response to emission change in megacity Shanghai, China. Atmospheric Chemistry and Physics, 2019, 19, 9017-9035.	4.9	62
48	Aerosol–photolysis interaction reduces particulate matter during wintertime haze events. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9755-9761.	7.1	57
49	Aerosol–radiation feedback deteriorates the wintertime haze in the North China Plain. Atmospheric Chemistry and Physics, 2019, 19, 8703-8719.	4.9	52
50	Physicochemical characteristics of black carbon aerosol and its radiative impact in a polluted urban area of China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,505.	3.3	49
51	Impact of Climate Change on Siberian High and Wintertime Air Pollution in China in Past Two Decades. Earth's Future, 2018, 6, 118-133.	6.3	49
52	Analysis of the causes of heavy aerosol pollution in Beijing, China: A case study with the WRF-Chem model. Particuology, 2015, 20, 32-40.	3.6	48
53	Simulations of organic aerosol concentrations during springtime in the Guanzhong Basin, China. Atmospheric Chemistry and Physics, 2016, 16, 10045-10061.	4.9	48
54	Impact of synoptic patterns and meteorological elements on the wintertime haze in the Beijing-Tianjin-Hebei region, China from 2013 to 2017. Science of the Total Environment, 2020, 704, 135210.	8.0	48

XUEXI TIE

#	Article	IF	CITATIONS
55	On the potential high acid deposition in northeastern China. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4834-4846.	3.3	45
56	Effect of hydrolysis of N2O5 on nitrate and ammonium formation in Beijing China: WRF-Chem model simulation. Science of the Total Environment, 2017, 579, 221-229.	8.0	44
57	Long-term measurements of planetary boundary layer height and interactions with PM2.5 in Shanghai, China. Atmospheric Pollution Research, 2019, 10, 989-996.	3.8	43
58	Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau. Science of the Total Environment, 2016, 573, 1041-1052.	8.0	41
59	Characterization and health risk assessment of airborne pollutants in commercial restaurants in northwestern China: Under a low ventilation condition in wintertime. Science of the Total Environment, 2018, 633, 308-316.	8.0	38
60	Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling. Science of the Total Environment, 2018, 645, 901-912.	8.0	38
61	Seasonal variation and four-year trend of black carbon in the Mid-west China: The analysis of the ambient measurement and WRF-Chem modeling. Atmospheric Environment, 2015, 123, 430-439.	4.1	33
62	Effect of ship emissions on O3 in the Yangtze River Delta region of China: Analysis of WRF-Chem modeling. Science of the Total Environment, 2019, 683, 360-370.	8.0	32
63	Impacts of mountains on black carbon aerosol under different synoptic meteorology conditions in the Guanzhong region, China. Atmospheric Research, 2015, 164-165, 286-296.	4.1	31
64	Analysis of a long-term measurement of air pollutants (2007–2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games. Chemosphere, 2016, 159, 647-658.	8.2	30
65	Widespread air pollutants of the North China Plain during the Asian summer monsoon season: a case study. Atmospheric Chemistry and Physics, 2018, 18, 8491-8504.	4.9	29
66	Increasing wintertime ozone levels and secondary aerosol formation in the Guanzhong basin, central China. Science of the Total Environment, 2020, 745, 140961.	8.0	28
67	Variability of SO2 in an intensive fog in North China Plain: Evidence of high solubility of SO2. Particuology, 2013, 11, 41-47.	3.6	27
68	Vapor isotopic evidence for the worsening of winter air quality by anthropogenic combustion-derived water. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33005-33010.	7.1	24
69	The impact of Climate Change on the Western Pacific Subtropical High and the related ozone pollution in Shanghai, China. Scientific Reports, 2019, 9, 16998.	3.3	23
70	Urban dust in the Guanzhong basin of China, part II: A case study of urban dust pollution using the WRF-Dust model. Science of the Total Environment, 2016, 541, 1614-1624.	8.0	22
71	Urban dust in the Guanzhong Basin of China, part I: A regional distribution of dust sources retrieved using satellite data. Science of the Total Environment, 2016, 541, 1603-1613.	8.0	22
72	Effects of organic coating on the nitrate formation by suppressing the N ₂ O ₅ heterogeneous hydrolysis: a case study during wintertime in Beijing–Tianjin–Hebei (BTH). Atmospheric Chemistry and Physics, 2019, 19, 8189-8207.	4.9	22

XUEXI TIE

#	Article	IF	CITATIONS
73	Ozone enhancement due to the photodissociation of nitrous acid in eastern China. Atmospheric Chemistry and Physics, 2019, 19, 11267-11278.	4.9	20
74	Effects of stabilized Criegee intermediates (sCls) on sulfate formation: a sensitivity analysis during summertime in Beijing–Tianjin–Hebei (BTH), China. Atmospheric Chemistry and Physics, 2019, 19, 13341-13354.	4.9	20
75	Impacts of short-term mitigation measures on PM _{2.5} and radiative effects: a case study at a regional background site near Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 1881-1899.	4.9	18
76	Analysis of surface and vertical measurements of O3 and its chemical production in the NCP region, China. Atmospheric Environment, 2020, 241, 117759.	4.1	17
77	Insights into particulate matter pollution in the North China Plain during wintertime: local contribution or regional transport?. Atmospheric Chemistry and Physics, 2021, 21, 2229-2249.	4.9	16
78	Impacts of Himalayas on black carbon over the Tibetan Plateau during summer monsoon. Science of the Total Environment, 2017, 598, 307-318.	8.0	15
79	Meteorology driving the highest ozone level occurred during mid-spring to early summer in Shanghai, China. Science of the Total Environment, 2021, 785, 147253.	8.0	14
80	Cropland nitrogen dioxide emissions and effects on the ozone pollution in the North China plain. Environmental Pollution, 2022, 294, 118617.	7.5	14
81	Quantifying sources of elemental carbon over the Guanzhong Basin of China: A consistent network of measurements and WRF-Chem modeling. Environmental Pollution, 2016, 214, 86-93.	7.5	13
82	Optical Properties of Aerosols and Implications for Radiative Effects in Beijing During the Asiaâ€Pacific Economic Cooperation Summit 2014. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,119.	3.3	13
83	Air Pollution Zone Migrates South Driven by East Asian Winter Monsoon and Climate Change. Geophysical Research Letters, 2021, 48, e2021GL092672.	4.0	12
84	Local and transboundary transport contributions to the wintertime particulate pollution in the Guanzhong Basin (GZB), China: A case study. Science of the Total Environment, 2021, 797, 148876.	8.0	11
85	Impact of the Emission Control of Diesel Vehicles on Black Carbon (BC) Concentrations over China. Atmosphere, 2020, 11, 696.	2.3	10
86	Shortâ€īerm Weather Patterns Modulate Air Quality in Eastern China During 2015–2016 Winter. Journal of Geophysical Research D: Atmospheres, 2019, 124, 986-1002.	3.3	8
87	The warming Tibetan Plateau improves winter air quality in the Sichuan Basin, China. Atmospheric Chemistry and Physics, 2020, 20, 14873-14887.	4.9	8
88	Assessment of Atmospheric Oxidizing Capacity Over the Beijingâ€Tianjinâ€Hebei (BTH) Area, China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033834.	3.3	7
89	Impacts of Transboundary Transport on Coastal Air Quality of South China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
90	Impacts of Changes in Land Use and Land Cover Between 2001 and 2018 on Summertime O ₃ Formation in North China Plain and Surrounding Areas–A Case Study. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4

Xuexi Tie

#	Article	lF	CITATIONS
91	Understanding Variability of Haze in Eastern China. Journal of Fundamentals of Renewable Energy and Applications, 2017, 07, .	0.2	2
92	Heterogeneous HONO formation deteriorates the wintertime particulate pollution in the Guanzhong Basin, China. Environmental Pollution, 2022, 303, 119157.	7.5	2
93	Effects of hydroperoxy radical heterogeneous loss on the summertime ozone formation in the North China Plain. Science of the Total Environment, 2022, 825, 153993.	8.0	2
94	Reply to Hopke and Dai: The correlation between PM2.5 and combustion-derived water is unlikely driven by local residential coal combustion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2102877118.	7.1	1