
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3556996/publications.pdf Version: 2024-02-01

ADAM CODZIK

#	Article	IF	CITATIONS
1	Novel putative polyethylene terephthalate (PET) plastic degrading enzymes from the environmental metagenome. Proteins: Structure, Function and Bioinformatics, 2022, 90, 504-511.	1.5	17
2	Multiple expansions of globally uncommon SARS-CoV-2 lineages in Nigeria. Nature Communications, 2022, 13, 688.	5.8	23
3	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	13.7	117
4	Actin Cross-Linking Effector Domain of the <i>Vibrio vulnificus</i> F-Type MARTX Toxin Dominates Disease Progression During Intestinal Infection. Infection and Immunity, 2022, , e0062721.	1.0	1
5	A Genomic Island of Vibrio cholerae Encodes a Three-Component Cytotoxin with Monomer and Protomer Forms Structurally Similar to Alpha-Pore-Forming Toxins. Journal of Bacteriology, 2022, 204, e0055521.	1.0	3
6	What the protein data bank tells us about the evolutionary conservation of protein conformational diversity. Protein Science, 2022, 31, .	3.1	2
7	Identification and phylogenetic analysis of RNA binding domain abundant in apicomplexans or RAP proteins. Microbial Genomics, 2021, 7, .	1.0	5
8	Detection of a SARS-CoV-2 variant of concern in South Africa. Nature, 2021, 592, 438-443.	13.7	1,381
9	ModFlex: Towards Function Focused Protein Modeling. Journal of Molecular Biology, 2021, 433, 166828.	2.0	2
10	HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host and Microbe, 2021, 29, 1093-1110.	5.1	73
11	The interplay of SARS-CoV-2 evolution and constraints imposed by the structure and functionality of its proteins. PLoS Computational Biology, 2021, 17, e1009147.	1.5	35
12	NMR in structural genomics to increase structural coverage of the protein universe. , 2021, , 143-154.		0
13	Dynamic changes in human single-cell transcriptional signatures during fatal sepsis. Journal of Leukocyte Biology, 2021, 110, 1253-1268.	1.5	26
14	Structure of galactarate dehydratase, a new fold in an enolase involved in bacterial fitness after antibiotic treatment. Protein Science, 2020, 29, 711-722.	3.1	4
15	Protein structure, amino acid composition and sequence determine proteome vulnerability to oxidationâ€induced damage. EMBO Journal, 2020, 39, e104523.	3.5	34
16	Microbial function and genital inflammation in young South African women at high risk of HIV infection. Microbiome, 2020, 8, 165.	4.9	23
17	FATCAT 2.0: towards a better understanding of the structural diversity of proteins. Nucleic Acids Research, 2020, 48, W60-W64.	6.5	134
18	Coronavirus3D: 3D structural visualization of COVID-19 genomic divergence. Bioinformatics, 2020, 36, 4360-4362.	1.8	39

#	Article	IF	CITATIONS
19	Difference contact maps: From what to why in the analysis of the conformational flexibility of proteins. PLoS ONE, 2020, 15, e0226702.	1.1	11
20	Understanding oncogenicity of cancer driver genes and mutations in the cancer genomics era. FEBS Letters, 2020, 594, 4233-4246.	1.3	20
21	Crystal structure of Nsp15 endoribonuclease <scp>NendoU</scp> from <scp>SARS oV</scp> â€2. Protein Science, 2020, 29, 1596-1605.	3.1	294
22	Comparison of metalâ€bound and unbound structures of aminopeptidase B proteins from <scp><i>Escherichia coli</i></scp> and <scp><i>Yersinia pestis</i></scp> . Protein Science, 2020, 29, 1618-1628.	3.1	3
23	Structures of singleâ€layer βâ€sheet proteins evolved from βâ€hairpin repeats. Protein Science, 2019, 28, 1676-1689.	3.1	4
24	Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach. Scientific Reports, 2019, 9, 690.	1.6	46
25	Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nature Communications, 2019, 10, 2674.	5.8	240
26	Cancer3D 2.0: interactive analysis of 3D patterns of cancer mutations in cancer subsets. Nucleic Acids Research, 2019, 47, D895-D899.	6.5	12
27	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	13.5	1,670
28	Draft Genome Sequences of Two Vibrio parahaemolyticus Strains Associated with Gastroenteritis after Raw Seafood Ingestion in Colorado. Genome Announcements, 2018, 6, .	0.8	3
29	The "Sticky Patch―Model of Crystallization and Modification of Proteins for Enhanced Crystallizability. Methods in Molecular Biology, 2017, 1607, 77-115.	0.4	17
30	The Functional Impact of Alternative Splicing in Cancer. Cell Reports, 2017, 20, 2215-2226.	2.9	517
31	Comparison of algorithms for the detection of cancer drivers at subgene resolution. Nature Methods, 2017, 14, 782-788.	9.0	72
32	Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: a proposed framework. Genome Medicine, 2017, 9, 113.	3.6	47
33	Neutralizing antibody affords comparable protection against vaginal and rectal simian/human immunodeficiency virus challenge in macaques. Aids, 2016, 30, 1543-1551.	1.0	47
34	<scp>NMR</scp> in structural genomics to increase structural coverage of the protein universe. FEBS Journal, 2016, 283, 3870-3881.	2.2	5
35	Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4639-47.	3.3	127
36	UHM–ULM interactions in the RBM39–U2AF65 splicing-factor complex. Acta Crystallographica Section D: Structural Biology, 2016, 72, 497-511.	1.1	36

#	Article	IF	CITATIONS
37	A Distinct Type of Pilus from the Human Microbiome. Cell, 2016, 165, 690-703.	13.5	78
38	Mutation Drivers of Immunological Responses to Cancer. Cancer Immunology Research, 2016, 4, 789-798.	1.6	32
39	Revealing aperiodic aspects of solenoid proteins from sequence information. Bioinformatics, 2016, 32, 2776-2782.	1.8	3
40	PDBFlex: exploring flexibility in protein structures. Nucleic Acids Research, 2016, 44, D423-D428.	6.5	70
41	Protael: protein data visualization library for the web. Bioinformatics, 2016, 32, 602-604.	1.8	9
42	Crystal Structure and Activity Studies of the C11 Cysteine Peptidase from Parabacteroides merdae in the Human Gut Microbiome. Journal of Biological Chemistry, 2016, 291, 9482-9491.	1.6	15
43	Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort. PLoS Pathogens, 2016, 12, e1005369.	2.1	241
44	PROPER: Performance visualization for optimizing and comparing ranking classifiers in MATLAB. Source Code for Biology and Medicine, 2015, 10, 15.	1.7	3
45	Cofactorâ€induced reversible folding of <scp>F</scp> lavodoxinâ€4 from <scp><i>L</i>, 2015, 24, 1600-1608.</scp>	3.1	2
46	A Pan-Cancer Catalogue of Cancer Driver Protein Interaction Interfaces. PLoS Computational Biology, 2015, 11, e1004518.	1.5	122
47	Structure and sequence analyses of Bacteroides proteins BVU_4064 and BF1687 reveal presence of two novel predominantly-beta domains, predicted to be involved in lipid and cell surface interactions. BMC Bioinformatics, 2015, 16, 7.	1.2	8
48	AIDA: <i>ab initio</i> domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction. Bioinformatics, 2015, 31, 2098-2105.	1.8	59
49	Analysis of Individual Protein Regions Provides Novel Insights on Cancer Pharmacogenomics. PLoS Computational Biology, 2015, 11, e1004024.	1.5	10
50	Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4666-4671.	3.3	43
51	Cancer3D: understanding cancer mutations through protein structures. Nucleic Acids Research, 2015, 43, D968-D973.	6.5	46
52	Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains. MBio, 2015, 6, e02327-14.	1.8	46
53	POSA: a user-driven, interactive multiple protein structure alignment server. Nucleic Acids Research, 2014, 42, W240-W245.	6.5	50
54	Improving the chances of successful protein structure determination with a random forest classifier. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 627-635.	2.5	46

#	Article	IF	CITATIONS
55	AIDA: ab initio domain assembly server. Nucleic Acids Research, 2014, 42, W308-W313.	6.5	47
56	Crystal structure of a putative quorum sensingâ€regulated protein (PA3611) from the Pseudomonasâ€specific DUF4146 family. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1086-1092.	1.5	7
57	Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family. Structure, 2014, 22, 1799-1809.	1.6	10
58	Molecular characterization of novel pyridoxalâ€5′â€phosphateâ€dependent enzymes from the human microbiome. Protein Science, 2014, 23, 1060-1076.	3.1	8
59	Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase. BMC Bioinformatics, 2014, 15, 112.	1.2	13
60	Phylogenomic analysis of glycogen branching and debranching enzymatic duo. BMC Evolutionary Biology, 2014, 14, 183.	3.2	27
61	PubServer: literature searches by homology. Nucleic Acids Research, 2014, 42, W430-W435.	6.5	13
62	Structural analysis of arabinose-5-phosphate isomerase fromBacteroides fragilisand functional implications. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2640-2651.	2.5	0
63	Structures of a Bifunctional Cell Wall Hydrolase CwlT Containing a Novel Bacterial Lysozyme and an NlpC/P60 dl-Endopeptidase. Journal of Molecular Biology, 2014, 426, 169-184.	2.0	25
64	bNAber: database of broadly neutralizing HIV antibodies. Nucleic Acids Research, 2014, 42, D1133-D1139.	6.5	69
65	FFAS-3D: improving fold recognition by including optimized structural features and template re-ranking. Bioinformatics, 2014, 30, 660-667.	1.8	97
66	Crystal structures of three representatives of a new <scp>P</scp> fam family PF14869 (DUF4488) suggest they function in sugar binding/uptake. Protein Science, 2014, 23, 1380-1391.	3.1	3
67	Structure- and context-based analysis of the GxGYxYP family reveals a new putative class of Glycoside Hydrolase. BMC Bioinformatics, 2014, 15, 196.	1.2	8
68	Basis for substrate recognition and distinction by matrix metalloproteinases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4148-55.	3.3	75
69	S-Nitrosylation-Mediated Redox Transcriptional Switch Modulates Neurogenesis and Neuronal Cell Death. Cell Reports, 2014, 8, 217-228.	2.9	58
70	ConSole: using modularity of Contact maps to locate Solenoid domains in protein structures. BMC Bioinformatics, 2014, 15, 119.	1.2	23
71	Structure and computational analysis of a novel protein with metallopeptidase-like and circularly permuted winged-helix-turn-helix domains reveals a possible role in modified polysaccharide biosynthesis. BMC Bioinformatics, 2014, 15, 75.	1.2	1
72	Structural systems biology: from bacterial to cancer networks. BMC Genomics, 2014, 15, O14.	1.2	0

#	Article	IF	CITATIONS
73	e-Driver: a novel method to identify protein regions driving cancer. Bioinformatics, 2014, 30, 3109-3114.	1.8	116
74	Crystal structure of a member of a novel family of dioxygenases (PF10014) reveals a conserved cupin fold and active site. Proteins: Structure, Function and Bioinformatics, 2014, 82, 164-170.	1.5	15
75	OUR EXPANDING PROTEIN UNIVERSE. , 2014, , .		0
76	THE MICROBIOME(S): MICROBIOTA, FAMILIES, FUNCTIONS. , 2014, , .		0
77	JCSC – Adapting Structural Genomics to Eukaryotic Complexes. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1148-C1148.	0.0	0
78	MORPH-PRO: a novel algorithm and web server for protein morphing. Algorithms for Molecular Biology, 2013, 8, 19.	0.3	9
79	Evolution of the Animal Apoptosis Network. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008649-a008649.	2.3	63
80	Two Pfam protein families characterized by a crystal structure of protein lpg2210 from Legionella pneumophila. BMC Bioinformatics, 2013, 14, 265.	1.2	3
81	Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics, 2013, 14, 873.	1.2	122
82	Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Nature Structural and Molecular Biology, 2013, 20, 1243-1249.	3.6	153
83	Structural Systems Biology Evaluation of Metabolic Thermotolerance in <i>Escherichia coli</i> . Science, 2013, 340, 1220-1223.	6.0	111
84	LUD, a new protein domain associated with lactate utilization. BMC Bioinformatics, 2013, 14, 341.	1.2	8
85	Structure and Function of a Novel <scp>ld</scp> -Carboxypeptidase A Involved in Peptidoglycan Recycling. Journal of Bacteriology, 2013, 195, 5555-5566.	1.0	16
86	Structure and Function of the DUF2233 Domain in Bacteria and in the Human Mannose 6-Phosphate Uncovering Enzyme. Journal of Biological Chemistry, 2013, 288, 16789-16799.	1.6	7
87	This Déjà Vu Feeling—Analysis of Multidomain Protein Evolution in Eukaryotic Genomes. PLoS Computational Biology, 2012, 8, e1002701.	1.5	37
88	The Structure of Mlc Titration Factor A (MtfA/Yeel) Reveals a Prototypical Zinc Metallopeptidase Related to Anthrax Lethal Factor. Journal of Bacteriology, 2012, 194, 2987-2999.	1.0	14
89	A Blueprint for HIV Vaccine Discovery. Cell Host and Microbe, 2012, 12, 396-407.	5.1	348
90	MORPH-PRO: A Novel Algorithm and Web Server for Protein Morphing. Lecture Notes in Computer Science, 2012, , 262-273.	1.0	0

#	Article	IF	CITATIONS
91	Structure of a Novel Winged-Helix Like Domain from Human NFRKB Protein. PLoS ONE, 2012, 7, e43761.	1.1	5
92	Structure of the pilus assembly protein TadZ from <i>Eubacterium rectale</i> : implications for polar localization. Molecular Microbiology, 2012, 83, 712-727.	1.2	22
93	Structure of an MmyB-Like Regulator from C. aurantiacus, Member of a New Transcription Factor Family Linked to Antibiotic Metabolism in Actinomycetes. PLoS ONE, 2012, 7, e41359.	1.1	14
94	Structural Determinants of Limited Proteolysis. Journal of Proteome Research, 2011, 10, 3642-3651.	1.8	68
95	Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires. Genome Biology, 2011, 12, R4.	13.9	84
96	TIR domain-containing adaptor SARM is a late addition to the ongoing microbe–host dialog. Developmental and Comparative Immunology, 2011, 35, 461-468.	1.0	66
97	Dynamics of coregulator-induced conformational perturbations in androgen receptor ligand binding domain. Molecular and Cellular Endocrinology, 2011, 341, 1-8.	1.6	8
98	Structural and Sequence Analysis of Imelysin-Like Proteins Implicated in Bacterial Iron Uptake. PLoS ONE, 2011, 6, e21875.	1.1	17
99	Metagenomics and the protein universe. Current Opinion in Structural Biology, 2011, 21, 398-403.	2.6	62
100	Crystal structure of a metalâ€dependent phosphoesterase (YP_910028.1) from <i>Bifidobacterium adolescentis</i> : Computational prediction and experimental validation of phosphoesterase activity. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2146-2160.	1.5	11
101	Internal organization of large protein families: Relationship between the sequence, structure, and functionâ€based clustering. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2389-2402.	1.5	4
102	TOPSAN: a dynamic web database for structural genomics. Nucleic Acids Research, 2011, 39, D494-D496.	6.5	17
103	Structural Insights into Inhibition of Bacillus anthracis Sporulation by a Novel Class of Non-heme Globin Sensor Domains. Journal of Biological Chemistry, 2011, 286, 8448-8458.	1.6	22
104	The FGGY Carbohydrate Kinase Family: Insights into the Evolution of Functional Specificities. PLoS Computational Biology, 2011, 7, e1002318.	1.5	48
105	FFAS server: novel features and applications. Nucleic Acids Research, 2011, 39, W38-W44.	6.5	130
106	Structure and Function of the First Full-Length Murein Peptide Ligase (Mpl) Cell Wall Recycling Protein. PLoS ONE, 2011, 6, e17624.	1.1	30
107	Structural Analysis of Papain-Like NlpC/P60 Superfamily Enzymes with a Circularly Permuted Topology Reveals Potential Lipid Binding Sites. PLoS ONE, 2011, 6, e22013.	1.1	22
108	CARD8 and NLRP1 Undergo Autoproteolytic Processing through a ZU5-Like Domain. PLoS ONE, 2011, 6, e27396.	1.1	168

#	Article	IF	CITATIONS
109	Domain architecture evolution of pattern-recognition receptors. Immunogenetics, 2010, 62, 263-272.	1.2	68
110	Structure of a Virulence Regulatory Factor CvfB Reveals a Novel Winged Helix RNA Binding Module. Structure, 2010, 18, 537-547.	1.6	23
111	TOPSAN: a collaborative annotation environment for structural genomics. BMC Bioinformatics, 2010, 11, 426.	1.2	19
112	A widespread peroxiredoxin-like domain present in tumor suppression- and progression-implicated proteins. BMC Genomics, 2010, 11, 590.	1.2	26
113	The structure of KPN03535 (gi 152972051), a novel putative lipoprotein fromKlebsiella pneumoniae, reveals an OB-fold. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1254-1260.	0.7	3
114	Conformational changes associated with the binding of zinc acetate at the putative active site ofXcTcmJ, a cupin fromXanthomonas campestrispv.campestris. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1347-1353.	0.7	5
115	Structure of an essential bacterial protein YeaZ (TM0874) from <i>Thermotoga maritima</i> at 2.5â€Ã resolution. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1230-1236.	0.7	17
116	The structure of the first representative of Pfam family PF09836 reveals a two-domain organization and suggests involvement in transcriptional regulation. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1174-1181.	0.7	8
117	The structure of the first representative of Pfam family PF06475 reveals a new fold with possible involvement in glycolipid metabolism. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1211-1217.	0.7	10
118	Structure of LP2179, the first representative of Pfam family PF08866, suggests a new fold with a role in amino-acid metabolism. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1205-1210.	0.7	3
119	The structure of Jann_2411 (DUF1470) from <i>Jannaschia</i> sp. at 1.45â€Ã resolution reveals a new fold (the ABATE domain) and suggests its possible role as a transcription regulator. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1198-1204.	0.7	9
120	Structure of the first representative of Pfam family PF09410 (DUF2006) reveals a structural signature of the calycin superfamily that suggests a role in lipid metabolism. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1153-1159.	0.7	18
121	Open and closed conformations of two SpoIIAA-like proteins (YP_749275.1 and YP_001095227.1) provide insights into membrane association and ligand binding. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1245-1253.	0.7	8
122	The structure of BVU2987 fromBacteroides vulgatusreveals a superfamily of bacterial periplasmic proteins with possible inhibitory function. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1265-1273.	0.7	8
123	Structures of the first representatives of Pfam family PF06938 (DUF1285) reveal a new fold with repeated structural motifs and possible involvement in signal transduction. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1218-1225.	0.7	8
124	Structures of the first representatives of Pfam family PF06684 (DUF1185) reveal a novel variant of theBacilluschorismate mutase fold and suggest a role in amino-acid metabolism. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1182-1189.	0.7	3
125	The structure of SSO2064, the first representative of Pfam family PF01796, reveals a novel two-domain zinc-ribbon OB-fold architecture with a potential acyl-CoA-binding role. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1160-1166.	0.7	20
126	A conserved fold for fimbrial components revealed by the crystal structure of a putative fimbrial assembly protein (BT1062) from <i>Bacteroides thetaiotaomicron</i> at 2.2â€Ã resolution. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1281-1286.	0.7	9

#	Article	IF	CITATIONS
127	Structure of the first representative of Pfam family PF04016 (DUF364) reveals enolase and Rossmann-like folds that combine to form a unique active site with a possible role in heavy-metal chelation. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1167-1173.	0.7	3
128	Structures of three members of Pfam PF02663 (FmdE) implicated in microbial methanogenesis reveal a conserved α+β core domain and an auxiliary C-terminal treble-clef zinc finger. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1335-1346.	0.7	8
129	Structure of the Î ³ - <scp>D</scp> -glutamyl- <scp>L</scp> -diamino acid endopeptidase YkfC from <i>Bacillus cereus</i> in complex with <scp>L</scp> -Ala-Î ³ - <scp>D</scp> -Clu: insights into substrate recognition by NlpC/P60 cysteine peptidases. Acta Crystallographica Section F: Structural Biology Communications. 2010. 66. 1354-1364.	0.7	64
130	The structure ofHaemophilus influenzaeprephenate dehydrogenase suggests unique features of bifunctional TyrA enzymes. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1317-1325.	0.7	11
131	Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiontBacteroides thetaiotaomicron. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1297-1305.	0.7	30
132	Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 fromExiguobacterium sibiricum255-15. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1237-1244.	0.7	2
133	Structure of <i>Bacteroides thetaiotaomicron</i> BT2081 at 2.05â€Ã resolution: the first structural representative of a new protein family that may play a role in carbohydrate metabolism. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1287-1296.	0.7	2
134	Structure of BT_3984, a member of the SusD/RagB family of nutrient-binding molecules. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1274-1280.	0.7	11
135	TOPSAN: use of a collaborative environment for annotating, analyzing and disseminating data on JCSG and PSI structures. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1143-1147.	0.7	33
136	Structure of a tryptophanyl-tRNA synthetase containing an iron–sulfur cluster. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1326-1334.	0.7	19
137	The JCSC high-throughput structural biology pipeline. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1137-1142.	0.7	99
138	The crystal structure of a bacterial Sufuâ€like protein defines a novel group of bacterial proteins that are similar to the Nâ€terminal domain of human Sufu. Protein Science, 2010, 19, 2131-2140.	3.1	12
139	Expansion of the Protein Repertoire in Newly Explored Environments: Human Gut Microbiome Specific Protein Families. PLoS Computational Biology, 2010, 6, e1000798.	1.5	52
140	Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics, 2010, 26, 2983-2985.	1.8	183
141	A Primer on Metagenomics. PLoS Computational Biology, 2010, 6, e1000667.	1.5	523
142	S-Nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion, 2010, 10, 573-578.	1.6	120
143	Bacterial Pleckstrin Homology Domains: A Prokaryotic Origin for the PH Domain. Journal of Molecular Biology, 2010, 396, 31-46.	2.0	32
144	Crystal Structure of the First Eubacterial Mre11 Nuclease Reveals Novel Features that May Discriminate Substrates During DNA Repair. Journal of Molecular Biology, 2010, 397, 647-663.	2.0	41

ADAM GODZIK

#	Article	IF	CITATIONS
145	Insights into Substrate Specificity of Geranylgeranyl Reductases Revealed by the Structure of Digeranylgeranylglycerophospholipid Reductase, an Essential Enzyme in the Biosynthesis of Archaeal Membrane Lipids. Journal of Molecular Biology, 2010, 404, 403-417.	2.0	36
146	Evolution of the protein domain repertoire of eukaryotes reveals strong functional patterns. Genome Biology, 2010, 11, P43.	13.9	1
147	PMAP: databases for analyzing proteolytic events and pathways. Nucleic Acids Research, 2009, 37, D611-D618.	6.5	57
148	Correction for Burra et al., Global distribution of conformational states derived from redundant models in the PDB points to non-uniqueness of the protein structure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12560-12560.	3.3	0
149	Structural and Functional Characterizations of SsgB, a Conserved Activator of Developmental Cell Division in Morphologically Complex Actinomycetes. Journal of Biological Chemistry, 2009, 284, 25268-25279.	1.6	23
150	The Signal for Signaling, Found. PLoS Pathogens, 2009, 5, e1000398.	2.1	3
151	Exploration of Uncharted Regions of the Protein Universe. PLoS Biology, 2009, 7, e1000205.	2.6	123
152	Global distribution of conformational states derived from redundant models in the PDB points to non-uniqueness of the protein structure. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10505-10510.	3.3	73
153	Structural Basis of Murein Peptide Specificity of a Î ³ -D-Glutamyl-L-Diamino Acid Endopeptidase. Structure, 2009, 17, 303-313.	1.6	73
154	PSI-2: Structural Genomics to Cover Protein Domain Family Space. Structure, 2009, 17, 869-881.	1.6	120
155	Understanding diversity of human innate immunity receptors: analysis of surface features of leucine-rich repeat domains in NLRs and TLRs. BMC Immunology, 2009, 10, 48.	0.9	39
156	Structural genomics is the largest contributor of novel structural leverage. Journal of Structural and Functional Genomics, 2009, 10, 181-191.	1.2	69
157	Crystal structure of a novel archaeal AAA+ ATPase SSO1545 from <i>Sulfolobus solfataricus</i> . Proteins: Structure, Function and Bioinformatics, 2009, 74, 1041-1049.	1.5	8
158	Crystal structure of the Fic (Filamentation induced by cAMP) family protein SO4266 (gi 24375750) from <i>Shewanella oneidensis</i> MRâ€1 at 1.6 à resolution. Proteins: Structure, Function and Bioinformatics, 2009, 75, 264-271.	1.5	23
159	Crystal structure of a novel Smâ€like protein of putative cyanophage origin at 2.60 à resolution. Proteins: Structure, Function and Bioinformatics, 2009, 75, 296-307.	1.5	18
160	Shotgun metaproteomics of the human distal gut microbiota. ISME Journal, 2009, 3, 179-189.	4.4	484
161	In search for more accurate alignments in the twilight zone. Protein Science, 2009, 11, 1702-1713.	3.1	72
162	S-Nitrosylation of Drp1 Mediates β-Amyloid-Related Mitochondrial Fission and Neuronal Injury. Science, 2009, 324, 102-105.	6.0	957

#	Article	IF	CITATIONS
163	A Structural Basis for the Regulatory Inactivation of DnaA. Journal of Molecular Biology, 2009, 385, 368-380.	2.0	15
164	Structural and Functional Analysis of the Globular Head Domain of p115 Provides Insight into Membrane Tethering. Journal of Molecular Biology, 2009, 391, 26-41.	2.0	34
165	Crystal Structure of Histidine Phosphotransfer Protein ShpA, an Essential Regulator of Stalk Biogenesis in Caulobacter crescentus. Journal of Molecular Biology, 2009, 390, 686-698.	2.0	13
166	Three-Dimensional Structural View of the Central Metabolic Network of <i>Thermotoga maritima</i> . Science, 2009, 325, 1544-1549.	6.0	176
167	The JCSG MR pipeline: optimized alignments, multiple models and parallel searches. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 133-140.	2.5	31
168	Crystal structure of 2â€ketoâ€3â€deoxygluconate kinase (TM0067) from <i>Thermotoga maritima</i> at 2.05 Ă resolution. Proteins: Structure, Function and Bioinformatics, 2008, 70, 603-608.	1.5	9
169	Crystal structure of AICAR transformylase IMP cyclohydrolase (TM1249) from <i>Thermotoga maritima</i> at 1.88 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1042-1049.	1.5	7
170	Crystal structure of an ADPâ€ribosylated protein with a cytidine deaminaseâ€like fold, but unknown function (TM1506), from <i>Thermotoga maritima</i> at 2.70 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1546-1552.	1.5	6
171	Crystal structures of MW1337R and lin2004: Representatives of a novel protein family that adopt a fourâ€helical bundle fold. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1589-1596.	1.5	3
172	<i>Chla</i> Dub1 of <i>Chlamydia trachomatis</i> suppresses NF-l̂ºB activation and inhibits lκBα ubiquitination and degradation. Cellular Microbiology, 2008, 10, 1879-1892.	1.1	107
173	TOPS++FATCAT: Fast flexible structural alignment using constraints derived from TOPS+ Strings Model. BMC Bioinformatics, 2008, 9, 358.	1.2	29
174	Genome Pool Strategy for Structural Coverage of Protein Families. Structure, 2008, 16, 1659-1667.	1.6	15
175	Novel genes dramatically alter regulatory network topology in amphioxus. Genome Biology, 2008, 9, R123.	13.9	33
176	The NLR Gene Family: A Standard Nomenclature. Immunity, 2008, 28, 285-287.	6.6	761
177	<i>Salmonella</i> Secreted Factor L Deubiquitinase of <i>Salmonella typhimurium</i> Inhibits NF-κB, Suppresses lκBα Ubiquitination and Modulates Innate Immune Responses. Journal of Immunology, 2008, 180, 5045-5056.	0.4	135
178	The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Research, 2008, 18, 1100-1111.	2.4	456
179	Probing Metagenomics by Rapid Cluster Analysis of Very Large Datasets. PLoS ONE, 2008, 3, e3375.	1.1	30
180	Using an alignment of fragment strings for comparing protein structures. Bioinformatics, 2007, 23, e219-e224.	1.8	33

#	Article	IF	CITATIONS
181	XtalPred: a web server for prediction of protein crystallizability. Bioinformatics, 2007, 23, 3403-3405.	1.8	269
182	CutDB: a proteolytic event database. Nucleic Acids Research, 2007, 35, D546-D549.	6.5	119
183	Subunit-Specific Roles of Glycine-Binding Domains in Activation of NR1/NR3 N-Methyl-d-aspartate Receptors. Molecular Pharmacology, 2007, 71, 112-122.	1.0	51
184	Putative type IV secretion genes in Bacillus anthracis. Trends in Microbiology, 2007, 15, 191-195.	3.5	14
185	Surprising complexity of the ancestral apoptosis network. Genome Biology, 2007, 8, R226.	13.9	77
186	The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families. PLoS Biology, 2007, 5, e16.	2.6	736
187	Crystal structure of homoserine O-succinyltransferase from Bacillus cereus at 2.4 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2007, 68, 999-1005.	1.5	13
188	Crystal structure of a transcription regulator (TM1602) from Thermotoga maritima at 2.3 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2007, 67, 247-252.	1.5	5
189	Crystal structure of NMA1982 from <i>Neisseria meningitidis</i> at 1.5 à resolution provides a structural scaffold for nonclassical, eukaryoticâ€kike phosphatases. Proteins: Structure, Function and Bioinformatics, 2007, 69, 415-421.	1.5	11
190	Crystal structure of TM1030 from Thermotoga maritima at 2.3 Ã resolution reveals molecular details of its transcription repressor function. Proteins: Structure, Function and Bioinformatics, 2007, 68, 418-424.	1.5	5
191	Crystal structures of two novel dyeâ€decolorizing peroxidases reveal a βâ€barrel fold with a conserved hemeâ€binding motif. Proteins: Structure, Function and Bioinformatics, 2007, 69, 223-233.	1.5	81
192	Crystal structure of MtnX phosphatase from <i>Bacillus subtilis</i> at 2.0 Ã resolution provides a structural basis for bipartite phosphomonoester hydrolysis of 2â€hydroxyâ€3â€ketoâ€5â€methylthiopentenylâ€1â€phosphate. Proteins: Structure, Function and Bioinformati 2007, 69, 433-439.	ics <mark>1.5</mark>	6
193	Identification and structural characterization of heme binding in a novel dyeâ€decolorizing peroxidase, TyrA. Proteins: Structure, Function and Bioinformatics, 2007, 69, 234-243.	1.5	67
194	Identification and characterization of DUSP27, a novel dual-specific protein phosphatase. FEBS Letters, 2007, 581, 2527-2533.	1.3	36
195	Functional Differentiation of Proteins: Implications for Structural Genomics. Structure, 2007, 15, 405-415.	1.6	9
196	Between Order and Disorder in Protein Structures: Analysis of "Dual Personality―Fragments in Proteins. Structure, 2007, 15, 1141-1147.	1.6	72
197	The challenge of protein structure determination—lessons from structural genomics. Protein Science, 2007, 16, 2472-2482.	3.1	135
198	Computational protein function prediction: Are we making progress?. Cellular and Molecular Life Sciences, 2007, 64, 2505-2511.	2.4	46

#	Article	IF	CITATIONS
199	SURF's UP! — Protein classification by surface comparisons. Journal of Biosciences, 2007, 32, 97-100.	0.5	12
200	Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22, 1658-1659.	1.8	8,965
201	Contribution of Electrostatic Interactions, Compactness and Quaternary Structure to Protein Thermostability: Lessons from Structural Genomics of Thermotoga maritima. Journal of Molecular Biology, 2006, 356, 547-557.	2.0	132
202	Cleavage targets and the D-arginine-based inhibitors of the West Nile virus NS3 processing proteinase. Biochemical Journal, 2006, 393, 503-511.	1.7	94
203	Crystal structure of phosphoribosylformylglycinamidine synthase II (smPurL) from Thermotoga maritima at 2.15 A resolution. Proteins: Structure, Function and Bioinformatics, 2006, 63, 1106-1111.	1.5	7
204	Crystal structure of a single-stranded DNA-binding protein (TM0604) from Thermotoga maritima at 2.60 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2006, 63, 256-260.	1.5	15
205	Crystal structure of TM1367 from Thermotoga maritima at 1.90 Ã resolution reveals an atypical member of the cyclophilin (peptidylprolyl isomerase) fold. Proteins: Structure, Function and Bioinformatics, 2006, 63, 1112-1118.	1.5	6
206	Crystal structure of acireductone dioxygenase (ARD) from Mus musculus at 2.06 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2006, 64, 808-813.	1.5	28
207	Crystal structure of the ApbE protein (TM1553) from Thermotoga maritima at 1.58 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2006, 64, 1083-1090.	1.5	10
208	Crystal structure of 2-phosphosulfolactate phosphatase (ComB) fromClostridium acetobutylicumat 2.6 Ã resolution reveals a new fold with a novel active site. Proteins: Structure, Function and Bioinformatics, 2006, 65, 771-776.	1.5	3
209	Crystal structure of an ORFan protein (TM1622) fromThermotoga maritimaat 1.75 Ã resolution reveals a fold similar to the Ran-binding protein Mog1p. Proteins: Structure, Function and Bioinformatics, 2006, 65, 777-782.	1.5	7
210	Crystal structure of phosphoribosylformyl-glycinamidine synthase II, PurS subunit (TM1244) from Thermotoga maritima at 1.90 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2006, 65, 249-254.	1.5	6
211	Crystal structure of a glycerate kinase (TM1585) from Thermotoga maritima at 2.70 Ã resolution reveals a new fold. Proteins: Structure, Function and Bioinformatics, 2006, 65, 243-248.	1.5	10
212	Comparative structural analysis of a novel glutathioneS-transferase (ATU5508) fromAgrobacterium tumefaciensat 2.0 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2006, 65, 527-537.	1.5	8
213	Support-vector-machine classification of linear functional motifs in proteins. Journal of Molecular Modeling, 2006, 12, 453-461.	0.8	6
214	Outcome of a Workshop on Archiving Structural Models of Biological Macromolecules. Structure, 2006, 14, 1211-1217.	1.6	60
215	Representing and comparing protein structures as paths in three-dimensional space. BMC Bioinformatics, 2006, 7, 460.	1.2	11
216	Flexible Structural Neighborhooda database of protein structural similarities and alignments. Nucleic Acids Research, 2006, 34, D277-D280.	6.5	29

#	Article	IF	CITATIONS
217	JAFA: a protein function annotation meta-server. Nucleic Acids Research, 2006, 34, W379-W381.	6.5	31
218	VISSA: a program to visualize structural features from structure sequence alignment. Bioinformatics, 2006, 22, 887-888.	1.8	11
219	Sensor Domains Encoded in Bacillus anthracis Virulence Plasmids Prevent Sporulation by Hijacking a Sporulation Sensor Histidine Kinase. Journal of Bacteriology, 2006, 188, 6354-6360.	1.0	32
220	Identification and Characterization of a Novel Bacterial Virulence Factor That Shares Homology with Mammalian Toll/Interleukin-1 Receptor Family Proteins. Infection and Immunity, 2006, 74, 594-601.	1.0	150
221	Identification and Functional Characterization of the BAG Protein Family in Arabidopsis thaliana. Journal of Biological Chemistry, 2006, 281, 18793-18801.	1.6	200
222	Novel SARS Unique AdoMet-Dependent Methyltransferase. Cell Cycle, 2006, 5, 2414-2416.	1.3	6
223	Fold Recognition Methods. Methods of Biochemical Analysis, 2005, 44, 525-546.	0.2	78
224	Structural Genomics of Thermotoga maritima Proteins Shows that Contact Order Is a Major Determinant of Protein Thermostability. Structure, 2005, 13, 857-860.	1.6	58
225	Connecting the Protein Structure Universe by Using Sparse Recurring Fragments. Structure, 2005, 13, 1213-1224.	1.6	61
226	Molecular modeling of phosphorylation sites in proteins using a database of local structure segments. Journal of Molecular Modeling, 2005, 11, 431-438.	0.8	10
227	Crystal structure of an alanine-glyoxylate aminotransferase from Anabaena sp. at 1.70 Ã resolution reveals a noncovalently linked PLP cofactor. Proteins: Structure, Function and Bioinformatics, 2005, 58, 971-975.	1.5	14
228	Crystal structure of a formiminotetrahydrofolate cyclodeaminase (TM1560) from Thermotoga maritima at 2.80 Ã resolution reveals a new fold. Proteins: Structure, Function and Bioinformatics, 2005, 58, 976-981.	1.5	4
229	Crystal structure of S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA) from Thermotoga maritima at 2.0 A resolution reveals a new fold. Proteins: Structure, Function and Bioinformatics, 2005, 59, 869-874.	1.5	16
230	Crystal structure of an indigoidine synthase A (IndA)-like protein (TM1464) from Thermotoga maritima at 1.90 Ã resolution reveals a new fold. Proteins: Structure, Function and Bioinformatics, 2005, 59, 864-868.	1.5	13
231	Crystal structure of an Apo mRNA decapping enzyme (DcpS) from Mouse at 1.83 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2005, 60, 797-802.	1.5	12
232	Crystal structure of a putative modulator of DNA gyrase (pmbA) from Thermotoga maritima at 1.95 Ã resolution reveals a new fold. Proteins: Structure, Function and Bioinformatics, 2005, 61, 444-448.	1.5	10
233	Crystal structure of the global regulatory protein CsrA from Pseudomonas putida at 2.05 Ã resolution reveals a new fold. Proteins: Structure, Function and Bioinformatics, 2005, 61, 449-453.	1.5	69
234	Crystal structure of Hsp33 chaperone (TM1394) from Thermotoga maritima at 2.20 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2005, 61, 669-673.	1.5	13

#	Article	IF	CITATIONS
235	Crystal structure of a conserved hypothetical protein (gi: 13879369) from Mouse at 1.90 Ã resolution reveals a new fold. Proteins: Structure, Function and Bioinformatics, 2005, 61, 1132-1136.	1.5	9
236	Crystal structure of virulence factor CJ0248 from Campylobacter jejuni at 2.25 Ã resolution reveals a new fold. Proteins: Structure, Function and Bioinformatics, 2005, 62, 292-296.	1.5	6
237	Automatic detection of subsystem/pathway variants in genome analysis. Bioinformatics, 2005, 21, i478-i486.	1.8	59
238	Fragnostic: walking through protein structure space. Nucleic Acids Research, 2005, 33, W249-W251.	6.5	22
239	MODELING AND ANALYZING THREE-DIMENSIONAL STRUCTURES OF HUMAN DISEASE PROTEINS. , 2005, , .		13
240	FFAS03: a server for profile-profile sequence alignments. Nucleic Acids Research, 2005, 33, W284-W288.	6.5	522
241	Practical lessons from protein structure prediction. Nucleic Acids Research, 2005, 33, 1874-1891.	6.5	109
242	Convergent evolution as a mechanism for pathogenic adaptation. Trends in Microbiology, 2005, 13, 522-527.	3.5	25
243	Multiple flexible structure alignment using partial order graphs. Bioinformatics, 2005, 21, 2362-2369.	1.8	125
244	Non-proteolytic, Receptor/Ligand Interactions Associate Cellular Membrane Type-1 Matrix Metalloproteinase with the Complement Component C1q. Journal of Biological Chemistry, 2004, 279, 50321-50328.	1.6	17
245	The Minimal Essential Core of a Cysteine-based Protein-tyrosine Phosphatase Revealed by a Novel 16-kDa VH1-like Phosphatase, VHZ. Journal of Biological Chemistry, 2004, 279, 35768-35774.	1.6	31
246	The Domains of Apoptosis: A Genomics Perspective. Science Signaling, 2004, 2004, re9-re9.	1.6	169
247	Comparative Analysis of Protein Domain Organization. Genome Research, 2004, 14, 343-353.	2.4	80
248	FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids Research, 2004, 32, W582-W585.	6.5	291
249	NERD: a DNA processing-related domain present in the anthrax virulence plasmid, pXO1. Trends in Biochemical Sciences, 2004, 29, 106-110.	3.7	15
250	The interplay of fold recognition and experimental structure determination in structural genomics. Current Opinion in Structural Biology, 2004, 14, 307-312.	2.6	40
251	Integrated web service for improving alignment quality based on segments comparison. BMC Bioinformatics, 2004, 5, 98.	1.2	9
252	Combination of multiple alignment analysis and surface mapping paves a way for a detailed pathway reconstructionThe case of VHL (von Hippel-Lindau) protein and angiogenesis regulatory pathway. Protein Science, 2004, 13, 786-796.	3.1	10

#	Article	IF	CITATIONS
253	Crystal structure of O-acetylserine sulfhydrylase (TM0665) from Thermotoga maritima at 1.8 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 56, 387-391.	1.5	18
254	Crystal structure of a putative oxalate decarboxylase (TM1287) from Thermotoga maritima at 1.95 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 56, 392-395.	1.5	16
255	Crystal structure of a phosphoribosylaminoimidazole mutase PurE (TM0446) from Thermotoga maritima at 1.77-Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 55, 474-478.	1.5	11
256	Crystal structure of a tandem cystathionine-β-synthase (CBS) domain protein (TM0935) from Thermotoga maritima at 1.87 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 57, 213-217.	1.5	35
257	Crystal structure of a type II quinolic acid phosphoribosyltransferase (TM1645) from Thermotoga maritima at 2.50 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 55, 768-771.	1.5	20
258	Crystal structure of an Udp-n-acetylmuramate-alanine ligase MurC (TM0231) from Thermotoga maritima at 2.3 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 55, 1078-1081.	1.5	21
259	Crystal structure of a methionine aminopeptidase (TM1478) from Thermotoga maritima at 1.9 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 56, 396-400.	1.5	8
260	Crystal structure of a PIN (PilT N-terminus) domain (AF0591) from Archaeoglobus fulgidus at 1.90 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 56, 404-408.	1.5	28
261	Crystal structure of a glycerophosphodiester phosphodiesterase (CDPD) from Thermotoga maritima (TM1621) at 1.60 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 56, 167-170.	1.5	29
262	Crystal structure of a ribose-5-phosphate isomerase RpiB (TM1080) from Thermotoga maritima at 1.90 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 56, 171-175.	1.5	14
263	Crystal structure of a novel manganese-containing cupin (TM1459) from Thermotoga maritima at 1.65 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 56, 611-614.	1.5	27
264	Crystal structure of an orphan protein (TM0875) from Thermotoga maritima at 2.00-Ã resolution reveals a new fold. Proteins: Structure, Function and Bioinformatics, 2004, 56, 607-610.	1.5	8
265	Crystal structure of a novel Thermotoga maritima enzyme (TM1112) from the cupin family at 1.83 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 56, 615-618.	1.5	6
266	Crystal structure of a putative NADPH-dependent oxidoreductase (Gl: 18204011) from mouse at 2.10 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 56, 629-633.	1.5	9
267	Crystal structure of an allantoicase (YIR029W) from Saccharomyces cerevisiae at 2.4 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 56, 619-624.	1.5	2
268	Crystal structure of an α/l² serine hydrolase (YDR428C) from Saccharomyces cerevisiae at 1.85 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 58, 755-758.	1.5	11
269	Crystal structure of a putative glutamine amido transferase (TM1158) from Thermotoga maritima at 1.7 à resolution. Proteins: Structure, Function and Bioinformatics, 2004, 54, 801-805.	1.5	6
270	Crystal structure of an HEPN domain protein (TM0613) from Thermotoga maritima at 1.75 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 54, 806-809.	1.5	7

#	Article	IF	CITATIONS
271	Crystal structure of an aspartate aminotransferase (TM1255) from Thermotoga maritima at 1.90 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 55, 759-763.	1.5	17
272	Crystal structure of a putative PII-like signaling protein (TM0021) from Thermotoga maritima at 2.5 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2004, 54, 810-813.	1.5	17
273	The importance of alignment accuracy for molecular replacement. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1229-1236.	2.5	149
274	Aggregate formation and synaptic abnormality induced by DSCR1. Journal of Neurochemistry, 2004, 88, 1485-1496.	2.1	51
275	Crystal Structure of the Actin Binding Domain of the Cyclase-Associated Protein. Biochemistry, 2004, 43, 10628-10641.	1.2	51
276	Database searching by flexible protein structure alignment. Protein Science, 2004, 13, 1841-1850.	3.1	46
277	Protein Tyrosine Phosphatases in the Human Genome. Cell, 2004, 117, 699-711.	13.5	1,697
278	HEPN: a common domain in bacterial drug resistance and human neurodegenerative proteins. Trends in Biochemical Sciences, 2003, 28, 224-226.	3.7	59
279	Challenges of structural genomics: bioinformatics. Biosilico, 2003, 1, 36-41.	0.5	2
280	Domain analysis of the tubulin cofactor system: a model for tubulin folding and dimerization. BMC Bioinformatics, 2003, 4, 46.	1.2	41
281	Mitochondrial fission in apoptosis, neurodegeneration and aging. Current Opinion in Cell Biology, 2003, 15, 706-716.	2.6	390
282	Crystal structure of uronate isomerase (TM0064) fromThermotoga maritimaat 2.85 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2003, 53, 142-145.	1.5	8
283	Crystal structure of Î ³ -glutamyl phosphate reductase (TM0293) from Thermotoga maritima at 2.0 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2003, 54, 157-161.	1.5	17
284	Crystal structure of an iron-containing 1,3-propanediol dehydrogenase (TM0920) from Thermotoga maritima at 1.3 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2003, 54, 174-177.	1.5	32
285	The apoptosis database. Cell Death and Differentiation, 2003, 10, 621-633.	5.0	26
286	Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nature Immunology, 2003, 4, 44-48.	7.0	94
287	Homology modeling provides insights into the binding mode of the PAAD/DAPIN/pyrin domain, a fourth member of the CARD/DD/DED domain family. Protein Science, 2003, 12, 1872-1881.	3.1	36
288	Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics, 2003, 19, ii246-ii255.	1.8	524

#	Article	IF	CITATIONS
289	Evolutionarily conserved cytoprotection provided by Bax Inhibitor-1 homologs from animals, plants, and yeast. Gene, 2003, 323, 101-113.	1.0	181
290	XOL-1, primary determinant of sexual fate in C. elegans, is a GHMP kinase family member and a structural prototype for a class of developmental regulators. Genes and Development, 2003, 17, 977-990.	2.7	44
291	Comparative Analysis of Apoptosis and Inflammation Genes of Mice and Humans. Genome Research, 2003, 13, 1376-1388.	2.4	104
292	CARD6 Is a Modulator of NF-κB Activation by Nod1- and Cardiak-mediated Pathways. Journal of Biological Chemistry, 2003, 278, 31941-31949.	1.6	63
293	Homotypic Secretory Vesicle Fusion Induced by the Protein Tyrosine Phosphatase MEG2 Depends on Polyphosphoinositides in T Cells. Journal of Immunology, 2003, 171, 6661-6671.	0.4	44
294	A Residue in the S2 Subsite Controls Substrate Selectivity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9. Journal of Biological Chemistry, 2003, 278, 17158-17163.	1.6	43
295	The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: Subserving RPGR function and participating in disk morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3965-3970.	3.3	205
296	A segment alignment approach to protein comparison. Bioinformatics, 2003, 19, 742-749.	1.8	31
297	The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappaB and pro-caspase-1 regulation. Biochemical Journal, 2003, 373, 101-113.	1.7	156
298	Characterization of the anti-apoptotic mechanism of Bcl-B. Biochemical Journal, 2003, 376, 229-236.	1.7	33
299	Inhibition of T Cell Antigen Receptor Signaling by VHR-related MKPX (VHX), a New Dual Specificity Phosphatase Related to VH1 Related (VHR). Journal of Biological Chemistry, 2002, 277, 5524-5528.	1.6	73
300	A Novel PAAD-containing Protein That Modulates NF-κB Induction by Cytokines Tumor Necrosis Factor-α and Interleukin-1β. Journal of Biological Chemistry, 2002, 277, 35333-35340.	1.6	93
301	Identification and Characterization of DEDD2, a Death Effector Domain-containing Protein. Journal of Biological Chemistry, 2002, 277, 7501-7508.	1.6	36
302	CADD, a Chlamydia Protein That Interacts with Death Receptors. Journal of Biological Chemistry, 2002, 277, 9633-9636.	1.6	84
303	Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11664-11669.	3.3	397
304	Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics, 2002, 18, 77-82.	1.8	475
305	A Unique Substrate Recognition Profile for Matrix Metalloproteinase-2. Journal of Biological Chemistry, 2002, 277, 4485-4491.	1.6	103
306	A Unique Substrate Binding Mode Discriminates Membrane Type-1 Matrix Metalloproteinase from Other Matrix Metalloproteinases. Journal of Biological Chemistry, 2002, 277, 23788-23793.	1.6	84

#	Article	IF	CITATIONS
307	Sequence clustering strategies improve remote homology recognitions while reducing search times. Protein Engineering, Design and Selection, 2002, 15, 643-649.	1.0	57
308	Cloning and characterization of glucose transporter 11, a novel sugar transporter that is alternatively spliced in various tissues. Molecular Genetics and Metabolism, 2002, 76, 37-45.	0.5	39
309	Cysteine regulation of protein function – as exemplified by NMDA-receptor modulation. Trends in Neurosciences, 2002, 25, 474-480.	4.2	349
310	Discovering new genes with advanced homology detection. Trends in Biotechnology, 2002, 20, 315-316.	4.9	10
311	Crystal structure of thy1, a thymidylate synthase complementing protein fromThermotoga maritimaat 2.25 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2002, 49, 142-145.	1.5	50
312	Crystal structure of a zinc-containing glycerol dehydrogenase (TM0423) from Thermotoga maritima at 1.5 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2002, 50, 371-374.	1.5	8
313	Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420, 563-573.	13.7	1,548
314	Response to 'Interaction of DAP3 and FADD only after cellular disruption'. Nature Immunology, 2002, 3, 4-5.	7.0	5
315	Bcl-B, a Novel Bcl-2 Family Member That Differentially Binds and Regulates Bax and Bak. Journal of Biological Chemistry, 2001, 276, 12481-12484.	1.6	109
316	CLAN, a Novel Human CED-4-like Gene. Genomics, 2001, 75, 77-83.	1.3	70
317	Surface Map Comparison: Studying Function Diversity of Homologous Proteins. Journal of Molecular Biology, 2001, 309, 793-806.	2.0	36
318	Fold Predictions for Bacterial Genomes. Journal of Structural Biology, 2001, 134, 219-231.	1.3	25
319	Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics, 2001, 17, 282-283.	1.8	895
320	Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Biochemical Journal, 2001, 356, 705.	1.7	79
321	PAAD – a new protein domain associated with apoptosis, cancer and autoimmune diseases. Trends in Biochemical Sciences, 2001, 26, 85-87.	3.7	129
322	TUCAN, an Antiapoptotic Caspase-associated Recruitment Domain Family Protein Overexpressed in Cancer. Journal of Biological Chemistry, 2001, 276, 32220-32229.	1.6	94
323	A Diverse Family of Proteins Containing Tumor Necrosis Factor Receptor-associated Factor Domains. Journal of Biological Chemistry, 2001, 276, 24242-24252.	1.6	192
324	Bcl-G, a Novel Pro-apoptotic Member of the Bcl-2 Family. Journal of Biological Chemistry, 2001, 276, 2780-2785.	1.6	146

#	Article	IF	CITATIONS
325	A Novel Enhancer of the Apaf1 Apoptosome Involved in Cytochrome c-dependent Caspase Activation and Apoptosis. Journal of Biological Chemistry, 2001, 276, 9239-9245.	1.6	154
326	ATP-activated oligomerization as a mechanism for apoptosis regulation: Fold and mechanism prediction for CED-4. , 2000, 39, 197-203.		30
327	From fold to function predictions: an apoptosis regulator protein BID. Computers & Chemistry, 2000, 24, 511-517.	1.2	2
328	Improving the quality of twilightâ€zone alignments. Protein Science, 2000, 9, 1487-1496.	3.1	120
329	The Drosophila Tumor Necrosis Factor Receptor-associated Factor-1 (DTRAF1) Interacts with Pelle and Regulates NFI®B Activity. Journal of Biological Chemistry, 2000, 275, 12102-12107.	1.6	53
330	BAR: An apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proceedings of the United States of America, 2000, 97, 2597-2602.	3.3	172
331	Saturated BLAST: an automated multiple intermediate sequence search used to detect distant homology. Bioinformatics, 2000, 16, 1105-1110.	1.8	69
332	AhpF Can Be Dissected into Two Functional Units:Â Tandem Repeats of Two Thioredoxin-like Folds in the N-Terminus Mediate Electron Transfer from the Thioredoxin Reductase-like C-Terminus to AhpCâ€. Biochemistry, 2000, 39, 6602-6615.	1.2	71
333	Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Science, 2000, 9, 232-241.	3.1	431
334	Drosophila Pro-apoptotic Bcl-2/Bax Homologue Reveals Evolutionary Conservation of Cell Death Mechanisms. Journal of Biological Chemistry, 2000, 275, 27303-27306.	1.6	76
335	The Aspergillus nidulans cysA gene encodes a novel type of serine O-acetyltransferase which is homologous to homoserine O-acetyltransferases The GenBank accession number for the sequence reported in this paper is AF029885 Microbiology (United Kingdom), 2000, 146, 2695-2703.	0.7	19
336	Drosophila pro-apoptotic Bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. Journal of Biological Chemistry, 2000, 275, 27303-6.	1.6	74
337	Ion Channel Activity of the BH3 Only Bcl-2 Family Member, BID. Journal of Biological Chemistry, 1999, 274, 21932-21936.	1.6	174
338	From fold predictions to function predictions: Automation of functional site conservation analysis for functional genome predictions. Protein Science, 1999, 8, 1104-1115.	3.1	59
339	CAFASP-1: Critical assessment of fully automated structure prediction methods. , 1999, 37, 209-217.		110
340	TheHelicobacter pylori genome: From sequence analysis to structural and functional predictions. Proteins: Structure, Function and Bioinformatics, 1999, 36, 20-30.	1.5	18
341	Functional insights from structural predictions: Analysis of the Escherichia coli genome. Protein Science, 1999, 8, 614-624.	3.1	38
342	CAFASPâ€1: Critical assessment of fully automated structure prediction methods. Proteins: Structure, Function and Bioinformatics, 1999, 37, 209-217.	1.5	60

#	Article	IF	CITATIONS
343	The Helicobacter pylori genome: From sequence analysis to structural and functional predictions. Proteins: Structure, Function and Bioinformatics, 1999, 36, 20-30.	1.5	1
344	Functional analysis of the Escherichia coli genome for members of the α/β hydrolase family. Folding & Design, 1998, 3, 535-548.	4.5	26
345	Multiple Model Approach: Exploring the Limits of Comparative Modeling. Journal of Molecular Modeling, 1998, 4, 294-309.	0.8	24
346	Fold prediction by a hierarchy of sequence, threading, and modeling methods. Protein Science, 1998, 7, 1431-1440.	3.1	91
347	Fold and function predictions for Mycoplasma genitalium proteins. Folding & Design, 1998, 3, 229-238.	4.5	94
348	Functional analysis of the Escherichia coli genome using the sequence-to-structure-to-function paradigm: identification of proteins exhibiting the Glutaredoxin/Thioredoxin disulfide oxidoreductase activity 1 1Edited by F. E. Cohen. Journal of Molecular Biology, 1998, 282, 703-711.	2.0	97
349	Similarities and differences between nonhomologous proteins with similar folds: evaluation of threading strategies. Folding & Design, 1997, 2, 307-317.	4.5	23
350	Counting and classifying possible protein folds. Trends in Biotechnology, 1997, 15, 147-151.	4.9	5
351	Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct?. Protein Science, 1997, 6, 676-688.	3.1	182
352	A method for the prediction of surface "U―turns and transglobular connections in small proteins. , 1997, 27, 290-308.		28
353	Structural Diversity in a Family of Homologous Proteins. Journal of Molecular Biology, 1996, 258, 349-366.	2.0	32
354	Knowledge-based potentials for protein folding: what can we learn from known protein structures?. Structure, 1996, 4, 363-366.	1.6	41
355	The structural alignment between two proteins: Is there a unique answer?. Protein Science, 1996, 5, 1325-1338.	3.1	219
356	Are proteins ideal mixtures of amino acids? Analysis of energy parameter sets. Protein Science, 1995, 4, 2107-2117.	3.1	146
357	In search of the ideal protein sequence. Protein Engineering, Design and Selection, 1995, 8, 409-416.	1.0	22
358	Flexible algorithm for direct multiple alignment of protein structures and sequences. Bioinformatics, 1994, 10, 587-596.	1.8	28
359	Lattice representations of globular proteins: How good are they?. Journal of Computational Chemistry, 1993, 14, 1194-1202.	1.5	89
360	A method for predicting protein structure from sequence. Current Biology, 1993, 3, 414-423.	1.8	80

#	Article	IF	CITATIONS
361	De novo and inverse folding predictions of protein structure and dynamics. Journal of Computer-Aided Molecular Design, 1993, 7, 397-438.	1.3	84
362	Regularities in interaction patterns of globular proteins. Protein Engineering, Design and Selection, 1993, 6, 801-810.	1.0	63
363	From independent modules to molten globules: observations on the nature of protein folding intermediates Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 2099-2100.	3.3	13
364	A general method for the prediction of the three dimensional structure and folding pathway of globular proteins: Application to designed helical proteins. Journal of Chemical Physics, 1993, 98, 7420-7433.	1.2	192
365	Sequence-structure matching in globular proteins: application to supersecondary and tertiary structure determination Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 12098-12102.	3.3	134
366	Topology fingerprint approach to the inverse protein folding problem. Journal of Molecular Biology, 1992, 227, 227-238.	2.0	341
367	Simulations of the folding pathway of triose phosphate isomerase-type alpha/beta barrel proteins Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2629-2633.	3.3	46
368	An estimation of energy parameters for the soliton movement in hydrogen-bonded chains. Chemical Physics Letters, 1990, 171, 217-221.	1.2	19
369	Conservation of residue interactions in a family of Ca-binding proteins. Protein Engineering, Design and Selection, 1989, 2, 589-596.	1.0	36
370	Soliton dynamics in alternating trans-polyacetylene and in stacked systems. Computational and Theoretical Chemistry, 1989, 188, 231-260.	1.5	5
371	On the interactions of charged side chains with the α-helix backbone. Biophysical Chemistry, 1988, 31, 29-34.	1.5	5
372	Conformational role of His-12 in C-peptide of ribonuclease A. Biophysical Chemistry, 1988, 31, 175-181.	1.5	14
373	The Monte Carlo simulation of pearl chain formation. Radiation and Environmental Biophysics, 1987, 26, 313-317.	0.6	4
374	Influence of randomly fluctuating forces and energy dissipation on soliton dynamics in transpolyacetylene. Solid State Communications, 1986, 60, 609-612.	0.9	22
375	On the Concept of Intermediate Oneâ€Particle States in Finite Chains. A Selfâ€Consistent Field Study. Physica Status Solidi (B): Basic Research, 1986, 136, 281-289.	0.7	2
376	Structural Genomics. , 0, , 419-438.		0
377	Increased Frequency of Indels in Hypervariable Regions of SARS-CoV-2 Proteins—A Possible Signature of Adaptive Selection. Frontiers in Genetics, 0, 13, .	1.1	7