Chih-Yuan Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3556848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteinâ€enabled detection of ibuprofen and sulfamethoxazole using solidâ€state nanopores. Proteomics, 2022, 22, e2100071.	1.3	4
2	Engineering adjustable two-pore devices for parallel ion transport and DNA translocations. Journal of Chemical Physics, 2021, 154, 105102.	1.2	9
3	Devices for Nanoscale Guiding of DNA through a 2D Nanopore. ACS Sensors, 2021, 6, 2534-2545.	4.0	8
4	Investigation of entrance effects on particle electrophoretic behavior near a nanopore for resistive pulse sensing. Electrophoresis, 2021, 42, 2206-2214.	1.3	0
5	Origin of Ultrahigh Rectification in Polyelectrolyte Bilayers Modified Conical Nanopores. Journal of Physical Chemistry Letters, 2021, 12, 11858-11864.	2.1	10
6	Tunable Current Rectification and Selectivity Demonstrated in Nanofluidic Diodes through Kinetic Functionalization. Journal of Physical Chemistry Letters, 2020, 11, 60-66.	2.1	42
7	Electrodiffusioosmosis-Induced Negative Differential Resistance in pH-Regulated Mesopores Containing Purely Monovalent Solutions. ACS Applied Materials & Interfaces, 2020, 12, 3198-3204.	4.0	27
8	lonic amplifying circuits inspired by electronics and biology. Nature Communications, 2020, 11, 1568.	5.8	45
9	Charge Inversion and Calcium Gating in Mixtures of Ions in Nanopores. Journal of the American Chemical Society, 2020, 142, 2925-2934.	6.6	73
10	Modulation of Charge Density and Charge Polarity of Nanopore Wall by Salt Gradient and Voltage. ACS Nano, 2019, 13, 9868-9879.	7.3	42
11	Electrokinetic Phenomena in Organic Solvents. Journal of Physical Chemistry B, 2019, 123, 6123-6131.	1.2	17
12	Rectification of Concentration Polarization in Mesopores Leads To High Conductance Ionic Diodes and High Performance Osmotic Power. Journal of the American Chemical Society, 2019, 141, 3691-3698.	6.6	187
13	Electrokinetic ion transport in an asymmetric double-gated nanochannel with a pH-tunable zwitterionic surface. Physical Chemistry Chemical Physics, 2019, 21, 7773-7780.	1.3	12
14	An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte. Nature Communications, 2019, 10, 5824.	5.8	62
15	Ion transport in a pH-regulated conical nanopore filled with a power-law fluid. Journal of Colloid and Interface Science, 2019, 537, 358-365.	5.0	10
16	Voltage-controlled ion transport and selectivity in a conical nanopore functionalized with pH-tunable polyelectrolyte brushes. Journal of Colloid and Interface Science, 2019, 537, 496-504.	5.0	20
17	Dual pH Gradient and Voltage Modulation of Ion Transport and Current Rectification in Biomimetic Nanopores Functionalized with a pH-Tunable Polyelectrolyte. Journal of Physical Chemistry C, 2019, 123, 12437-12443.	1.5	28
18	Power generation from a pH-regulated nanochannel through reverse electrodialysis: Effects of nanochannel shape and non-uniform H+ distribution. Electrochimica Acta, 2019, 294, 84-92.	2.6	58

CHIH-YUAN LIN

#	Article	IF	CITATIONS
19	Voltage-Induced Modulation of Ionic Concentrations and Ion Current Rectification in Mesopores with Highly Charged Pore Walls. Journal of Physical Chemistry Letters, 2018, 9, 393-398.	2.1	90
20	The Design and Characterization of Multifunctional Aptamer Nanopore Sensors. ACS Nano, 2018, 12, 4844-4852.	7.3	66
21	Rectification of ionic current in nanopores functionalized with bipolar polyelectrolyte brushes. Sensors and Actuators B: Chemical, 2018, 258, 1223-1229.	4.0	53
22	Rectifying Ionic Current in Conical Sub-Micropores Functionalized with Poly-L-Lysine. Biophysical Journal, 2018, 114, 494a.	0.2	0
23	Deformability of Individual Cells Probed by Electrical and Optical Signals. Biophysical Journal, 2018, 114, 192a.	0.2	0
24	Influence of salt valence on the rectification behavior of nanochannels. Journal of Colloid and Interface Science, 2018, 531, 483-492.	5.0	31
25	Ionic Current Rectification in a Conical Nanopore: Influences of Electroosmotic Flow and Type of Salt. Journal of Physical Chemistry C, 2017, 121, 4576-4582.	1.5	66
26	Importance of polyelectrolyte modification for rectifying the ionic current in conically shaped nanochannels. Physical Chemistry Chemical Physics, 2017, 19, 5351-5360.	1.3	45
27	lon Current Rectification Behavior of Bioinspired Nanopores Having a pH-Tunable Zwitterionic Surface. Analytical Chemistry, 2017, 89, 3952-3958.	3.2	62
28	Salt-Dependent Ion Current Rectification in Conical Nanopores: Impact of Salt Concentration and Cone Angle. Journal of Physical Chemistry C, 2017, 121, 28139-28147.	1.5	33
29	Power generation by a pH-regulated conical nanopore through reverse electrodialysis. Journal of Power Sources, 2017, 366, 169-177.	4.0	73
30	Salinity gradient power: Optimization of nanopore size. Electrochimica Acta, 2016, 219, 790-797.	2.6	41
31	Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles. ACS Nano, 2016, 10, 8413-8422.	7.3	57
32	Salt gradient driven ion transport in solid-state nanopores: the crucial role of reservoir geometry and size. Physical Chemistry Chemical Physics, 2016, 18, 30160-30165.	1.3	55
33	Influences of Cone Angle and Surface Charge Density on the Ion Current Rectification Behavior of a Conical Nanopore. Journal of Physical Chemistry C, 2016, 120, 25620-25627.	1.5	63
34	lonic Current Rectification in a pH-Tunable Polyelectrolyte Brushes Functionalized Conical Nanopore: Effect of Salt Gradient. Analytical Chemistry, 2016, 88, 1176-1187.	3.2	70
35	Salinity gradient power: influences of temperature and nanopore size. Nanoscale, 2016, 8, 2350-2357.	2.8	99
36	Regulating Current Rectification and Nanoparticle Transport Through a Salt Gradient in Bipolar Nanopores. Small, 2015, 11, 4594-4602.	5.2	60

CHIH-YUAN LIN

#	Article	IF	CITATIONS
37	Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore. Nanoscale, 2015, 7, 14023-14031.	2.8	54
38	Ion-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization. Journal of the American Society for Mass Spectrometry, 2015, 26, 1242-1251.	1.2	36
39	pH-Regulated Ionic Conductance in a Nanochannel with Overlapped Electric Double Layers. Analytical Chemistry, 2015, 87, 4508-4514.	3.2	105
40	Does decarboxylation make 2,5-dihydroxybenzoic acid special in matrix-assisted laser desorption/ionization?. Rapid Communications in Mass Spectrometry, 2014, 28, 1082-1088.	0.7	10
41	Electrophoresis of Deformable Polyelectrolytes in a Nanofluidic Channel. Langmuir, 2013, 29, 2446-2454.	1.6	12
42	Influence of the shape of a polyelectrolyte on its electrophoretic behavior. Soft Matter, 2012, 8, 9469.	1.2	21