
Madhur Anand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3556804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing cover of natural areas at smaller scales can improve the provision of biodiversity and ecosystem services in agroecological mosaic landscapes. Journal of Environmental Management, 2022, 303, 114248.	3.8	9
2	Plant functional traits as measures of ecosystem service provision. Ecosphere, 2022, 13, .	1.0	13
3	Increasing Functional Diversity in a Global Land Surface Model Illustrates Uncertainties Related to Parameter Simplification. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	6
4	Stochasticity-induced persistence in coupled social-ecological systems. Journal of Theoretical Biology, 2022, 542, 111088.	0.8	2
5	Above―and belowground drivers of intraspecific trait variability across subcontinental gradients for five ubiquitous forest plants in North America. Journal of Ecology, 2022, 110, 1590-1605.	1.9	8
6	Placing Brazil's grasslands and savannas on the map of science and conservation. Perspectives in Plant Ecology, Evolution and Systematics, 2022, 56, 125687.	1.1	22
7	Modelling coupled human–environment complexity for the future of the biosphere: strengths, gaps and promising directions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	11
8	Best response dynamics improve sustainability and equity outcomes in common-pool resources problems, compared to imitation dynamics. Journal of Theoretical Biology, 2021, 509, 110476.	0.8	9
9	Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecology Letters, 2021, 24, 970-983.	3.0	19
10	A well-timed shift from local to global agreements accelerates climate change mitigation. Nature Communications, 2021, 12, 2908.	5.8	2
11	Ideas and perspectives: Biogeochemistry – some key foci for the future. Biogeosciences, 2021, 18, 3005-3013.	1.3	8
12	Frost hinders the establishment of trees in highland grasslands in the Atlantic Forest ecotone region of southern Brazil. Journal of Vegetation Science, 2021, 32, e13053.	1.1	3
13	Prioritising COVID-19 vaccination in changing social and epidemiological landscapes: a mathematical modelling study. Lancet Infectious Diseases, The, 2021, 21, 1097-1106.	4.6	142
14	Coupled social and land use dynamics affect dietary choice and agricultural land-use extent. Communications Earth & Environment, 2021, 2, .	2.6	2
15	Deep learning for early warning signals of tipping points. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	84
16	When conflicts get heated, so does the planet: coupled social-climate dynamics under inequality. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211357.	1.2	5
17	Debates about vaccines and climate change on social media networks: a study in contrasts. Humanities and Social Sciences Communications, 2021, 8, .	1.3	6
18	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038

Madhur Anand

#	Article	IF	CITATIONS
19	Conditions for a Second Wave of COVID-19 Due to Interactions Between Disease Dynamics and Social Processes. Frontiers in Physics, 2020, 8, .	1.0	43
20	Spatial early warning signals of social and epidemiological tipping points in a coupled behaviour-disease network. Scientific Reports, 2020, 10, 7611.	1.6	12
21	Communicating sentiment and outlook reverses inaction against collective risks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17650-17655.	3.3	68
22	Biomass–density relationships of plant communities deviate from the selfâ€ŧhinning rule due to age structure and abiotic stress. Oikos, 2020, 129, 1393-1403.	1.2	5
23	Assessing the reliability of predicted plant trait distributions at the global scale. Global Ecology and Biogeography, 2020, 29, 1034-1051.	2.7	36
24	Charting pathways to climate change mitigation in a coupled socio-climate model. PLoS Computational Biology, 2019, 15, e1007000.	1.5	46
25	Socio-ecological mechanisms for persistence of native Australian grasses under pressure from nitrogen runoff and invasive species. Ecological Modelling, 2019, 413, 108830.	1.2	2
26	Impact of land composition and configuration on the functional trait assembly of forest communities in southern Ontario. Ecosphere, 2019, 10, e02633.	1.0	10
27	A complex systems framework for the sustainability doughnut. People and Nature, 2019, 1, 497-506.	1.7	8
28	Socio-ecological dynamics of Caribbean coral reef ecosystems and conservation opinion propagation. Scientific Reports, 2018, 8, 2597.	1.6	12
29	Precision conservation meets precision agriculture: A case study from southern Ontario. Agricultural Systems, 2018, 167, 176-185.	3.2	40
30	When too much isn't enough: Does current food production meet global nutritional needs?. PLoS ONE, 2018, 13, e0205683.	1.1	110
31	Global land use implications of dietary trends. PLoS ONE, 2018, 13, e0200781.	1.1	26
32	Elements of indigenous socio-ecological knowledge show resilience despite ecosystem changes in the forest-grassland mosaics of the Nilgiri Hills, India. Palgrave Communications, 2018, 4, .	4.7	9
33	Competition between injunctive social norms and conservation priorities gives rise to complex dynamics in a model of forest growth and opinion dynamics. Journal of Theoretical Biology, 2017, 432, 132-140.	0.8	18
34	Alternative stable states and the sustainability of forests, grasslands, and agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14552-14559.	3.3	50
35	Human–environment interactions in population and ecosystem health. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14502-14506.	3.3	83
36	Invasive gorse (Ulex europaeus, Fabaceae) changes plant community structure in subtropical forest–grassland mosaics of southern Brazil. Biological Invasions, 2016, 18, 1629-1643.	1.2	14

#	Article	IF	CITATIONS
37	Climatic sensitivity, waterâ€use efficiency, and growth decline in boreal jack pine (<i>Pinus) Tj ETQq1 1 0.784314 121, 2761-2774.</i>	1 rgBT /Ov 1.3	verlock 10 Tf 26
38	Early warning signals of regime shifts in coupled human–environment systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14560-14567.	3.3	112
39	Landowner perceptions of the value of natural forest and natural grassland in a mosaic ecosystem in southern Brazil. Sustainability Science, 2016, 11, 321-330.	2.5	21
40	Lichen communities in two old-growth pine (<i>Pinus</i>) forests. Lichenologist, 2014, 46, 697-709.	0.5	8
41	Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil. Ecological Modelling, 2014, 291, 224-232.	1.2	36
42	Modelling Interactions between Forest Pest Invasions and Human Decisions Regarding Firewood Transport Restrictions. PLoS ONE, 2014, 9, e90511.	1.1	41
43	Probing for the influence of atmospheric <scp>CO₂</scp> and climate change on forest ecosystems across biomes. Global Ecology and Biogeography, 2013, 22, 83-92.	2.7	157
44	The scientific value of the largest remaining old-growth red pine forests in North America. Biodiversity and Conservation, 2013, 22, 1847-1861.	1.2	9
45	Old Trees: Large and Small. Science, 2013, 339, 904-905.	6.0	10
46	The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems. Scientific Reports, 2013, 3, 2689.	1.6	64
47	Outlook on a Worldwide Forest Transition. PLoS ONE, 2013, 8, e75890.	1.1	37
48	Variable offspring size as an adaptation to environmental heterogeneity in a clonal plant species: integrating experimental and modelling approaches. Journal of Ecology, 2012, 100, 184-195.	1.9	21
49	Causal effects of latitude, disturbance and dispersal limitation on richness in a recovering temperate, subtropical and tropical forest. Journal of Vegetation Science, 2012, 23, 339-351.	1.1	19
50	Agent-based modelling of clonal plant propagation across space: Recapturing fairy rings, power laws and other phenomena. Ecological Informatics, 2011, 6, 127-135.	2.3	14
51	Mechanisms of Araucaria (Atlantic) Forest Expansion into Southern Brazilian Grasslands. Ecosystems, 2011, 14, 1354-1371.	1.6	61
52	Northward migrating trees establish in treefall gaps at the northern limit of the temperate–boreal ecotone, Ontario, Canada. Oecologia, 2010, 164, 1095-1106.	0.9	62
53	Modelling invasibility in endogenously oscillating tree populations: timing of invasion matters. Biological Invasions, 2010, 12, 219-231.	1.2	7
54	A model-based method for estimating effective dispersal distance in tropical plant populations. Theoretical Population Biology, 2010, 77, 219-226.	0.5	8

Madhur Anand

#	Article	IF	CITATIONS
55	Terrestrial Insect Communities and the Restoration of an Industrially Perturbed Landscape: Assessing Success and Surrogacy. Restoration Ecology, 2010, 18, 73-84.	1.4	30
56	Recent Widespread Tree Growth Decline Despite Increasing Atmospheric CO2. PLoS ONE, 2010, 5, e11543.	1.1	134
57	Past century changes in <i>Araucaria angustifolia</i> (Bertol.) Kuntze water use efficiency and growth in forest and grassland ecosystems of southern Brazil: implications for forest expansion. Global Change Biology, 2009, 15, 2387-2396.	4.2	73
58	Effects of disturbance frequency, species traits and resprouting on directional succession in an individualâ€based model of forest dynamics. Journal of Ecology, 2009, 97, 1028-1036.	1.9	44
59	Interactions between climate change, competition, dispersal, and disturbances in a tree migration model. Theoretical Ecology, 2008, 1, 209-220.	0.4	28
60	Rapid morphological change in stream beetle museum specimens correlates with climate change. Ecological Entomology, 2008, 33, 646-651.	1.1	57
61	Trophic structure and dynamical complexity in simple ecological models. Ecological Complexity, 2007, 4, 212-222.	1.4	18