
Fabio Ciccarone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3556703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipid catabolism and mitochondrial uncoupling are stimulated in brown adipose tissue of amyotrophic lateral sclerosis mouse models. Genes and Diseases, 2023, 10, 321-324.	3.4	1
2	DNA Methylation Analysis of Ribosomal DNA in Adults With Down Syndrome. Frontiers in Genetics, 2022, 13, 792165.	2.3	7
3	TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia, 2021, 35, 389-403.	7.2	26
4	Label-free metabolic clustering through unsupervised pixel classification of multiparametric fluorescent images. Analytica Chimica Acta, 2021, 1148, 238173.	5.4	13
5	ROS-dependent HIF1α activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells. Journal of Experimental and Clinical Cancer Research, 2021, 40, 94.	8.6	28
6	Poly(ADP-Ribose) Polymerase Inhibitors for Arsenic Trioxide–Resistant Acute Promyelocytic Leukemia: Synergistic In Vitro Antitumor Effects with Hypomethylating Agents or High-Dose Vitamin C. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 385-397.	2.5	7
7	Ageing affects subtelomeric DNA methylation in blood cells from a large European population enrolled in the MARK-AGE study. GeroScience, 2021, 43, 1283-1302.	4.6	4
8	Lipid Catabolism and ROS in Cancer: A Bidirectional Liaison. Cancers, 2021, 13, 5484.	3.7	16
9	Aconitase 2 inhibits the proliferation of MCF-7 cells promoting mitochondrial oxidative metabolism and ROS/FoxO1-mediated autophagic response. British Journal of Cancer, 2020, 122, 182-193.	6.4	41
10	Aconitase 2 sensitizes MCF-7 cells to cisplatin eliciting p53-mediated apoptosis in a ROS-dependent manner. Biochemical Pharmacology, 2020, 180, 114202.	4.4	10
11	Adipose Tissue and FoxO1: Bridging Physiology and Mechanisms. Cells, 2020, 9, 849.	4.1	36
12	High Dietary Fat Intake Affects DNA Methylation/Hydroxymethylation in Mouse Heart: Epigenetic Hints for Obesityâ€Related Cardiac Dysfunction. Molecular Nutrition and Food Research, 2019, 63, e1800970.	3.3	16
13	Targeting Glutathione Metabolism: Partner in Crime in Anticancer Therapy. Nutrients, 2019, 11, 1926.	4.1	87
14	Glutathione and Nitric Oxide: Key Team Players in Use and Disuse of Skeletal Muscle. Nutrients, 2019, 11, 2318.	4.1	40
15	Oxidative Stress-Driven Autophagy acROSs Onset and Therapeutic Outcome in Hepatocellular Carcinoma. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	4.0	38
16	FoxO1 localizes to mitochondria of adipose tissue and is affected by nutrient stress. Metabolism: Clinical and Experimental, 2019, 95, 84-92.	3.4	25
17	Paternal activation of CB2 cannabinoid receptor impairs placental and embryonic growth via an epigenetic mechanism. Scientific Reports, 2019, 9, 17034.	3.3	31
18	Nutritional Factors Modulating Alu Methylation in an Italian Sample from The Mark-Age Study Including Offspring of Healthy Nonagenarians. Nutrients, 2019, 11, 2986.	4.1	5

FABIO CICCARONE

#	Article	IF	CITATIONS
19	Forcing ATGL expression in hepatocarcinoma cells imposes glycolytic rewiring through PPAR-1±/p300-mediated acetylation of p53. Oncogene, 2019, 38, 1860-1875.	5.9	42
20	Hints on ATGL implications in cancer: beyond bioenergetic clues. Cell Death and Disease, 2018, 9, 316.	6.3	59
21	DNA methylation dynamics in aging: how far are we from understanding the mechanisms?. Mechanisms of Ageing and Development, 2018, 174, 3-17.	4.6	135
22	DNA Hydroxymethylation Levels Are Altered in Blood Cells From Down Syndrome Persons Enrolled in the MARK-AGE Project. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 737-744.	3.6	16
23	Zinc-Induced Metallothionein in Centenarian Offspring From a Large European Population: The MARK-AGE Project. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 745-753.	3.6	13
24	Aberrations of the TCA Cycle in Cancer. , 2018, , .		3
25	Defective DNA Methylation/Demethylation Processes Define Aging-Dependent Methylation Patterns. , 2018, , 33-58.		0
26	PARP1 orchestrates epigenetic events setting up chromatin domains. Seminars in Cell and Developmental Biology, 2017, 63, 123-134.	5.0	81
27	The TCA cycle as a bridge between oncometabolism and DNA transactions in cancer. Seminars in Cancer Biology, 2017, 47, 50-56.	9.6	60
28	Age-dependent expression of <i>DNMT1</i> and <i>DNMT3B</i> in PBMCs from a large European population enrolled in the MARK-AGE study. Aging Cell, 2016, 15, 755-765.	6.7	60
29	The PARP Inhibitor Olaparib Antagonizes Leukemic Growth Induced By TET1 Overexpression in AML1-ETO Positive Acute Myeloid Leukemia. Blood, 2016, 128, 4063-4063.	1.4	3
30	Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study. Aging, 2016, 8, 1896-1922.	3.1	36
31	TET1 Promotes Leukemic Growth in T-ALL Via Maintenance of 5-Hydroxymethylation Marks and Can be Antagonized By the PARP Inhibitor Olaparib. Blood, 2016, 128, 737-737.	1.4	0
32	R-Spondin 1/Dickkopf-1/Beta-Catenin Machinery Is Involved in Testicular Embryonic Angiogenesis. PLoS ONE, 2015, 10, e0124213.	2.5	6
33	Poly(ADP-Ribosyl)ation Affects Histone Acetylation and Transcription. PLoS ONE, 2015, 10, e0144287.	2.5	30
34	Reconfiguration of DNA methylation in aging. Mechanisms of Ageing and Development, 2015, 151, 60-70.	4.6	227
35	PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression. Oncotarget, 2015, 6, 15008-15021.	1.8	32
36	5mC-hydroxylase activity is influenced by the PARylation of TET1 enzyme. Oncotarget, 2015, 6, 24333-24347.	1.8	46

FABIO CICCARONE

#	Article	IF	CITATIONS
37	The epigenetic factor BORIS/CTCFL regulates the NOTCH3 gene expression in cancer cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 813-825.	1.9	32
38	Pharmacological inhibition of poly(ADP-ribose) polymerase-1 modulates resistance of human glioblastoma stem cells to temozolomide. BMC Cancer, 2014, 14, 151.	2.6	64
39	TET2 gene expression and 5-hydroxymethylcytosine level in multiple sclerosis peripheral blood cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1130-1136.	3.8	55
40	Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription. Oncotarget, 2014, 5, 10356-10367.	1.8	36
41	ADP-ribose polymer depletion leads to nuclear Ctcf re-localization and chromatin rearrangement. Biochemical Journal, 2013, 449, 623-630.	3.7	27
42	ADP-ribose polymers localized on Ctcf–Parp1–Dnmt1 complex prevent methylation of Ctcf target sites. Biochemical Journal, 2012, 441, 645-652.	3.7	110
43	Methylation-dependent <i>PAD2</i> upregulation in multiple sclerosis peripheral blood. Multiple Sclerosis Journal, 2012, 18, 299-304.	3.0	71
44	Poly(ADP-ribosyl)ation Acts in the DNA Demethylation of Mouse Primordial Germ Cells Also with DNA Damage-Independent Roles. PLoS ONE, 2012, 7, e46927.	2.5	60
45	Poly(ADP-ribosyl)ation affects stabilization of Che-1 protein in response to DNA damage. DNA Repair, 2011, 10, 380-389.	2.8	18
46	Dematin, a Component of the Erythrocyte Membrane Skeleton, Is Internalized by the Malaria Parasite and Associates with Plasmodium 14-3-3. Journal of Biological Chemistry, 2011, 286, 1227-1236.	3.4	28
47	Validation of suitable internal control genes for expression studies in aging. Mechanisms of Ageing and Development, 2010, 131, 89-95.	4.6	60
48	Inhibition of PARP activity by PJâ€34 leads to growth impairment and cell death associated with aberrant mitotic pattern and nucleolar actin accumulation in M14 melanoma cell line. Journal of Cellular Physiology, 2010, 222, 401-410.	4.1	21