List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3556360/publications.pdf Version: 2024-02-01

		66343	74163
120	6,849	42	75
papers	citations	h-index	g-index
122	122	122	4150
all docs	docs citations	times ranked	citing authors

REDT | SEMIED

#	Article	IF	CITATIONS
1	Genotoxic stress and viral infection induce transient expression of APOBEC3A and pro-inflammatory genes through two distinct pathways. Nature Communications, 2021, 12, 4917.	12.8	28
2	Structure of the PCBP2/stem–loop IV complex underlying translation initiation mediated by the poliovirus type I IRES. Nucleic Acids Research, 2020, 48, 8006-8021.	14.5	18
3	Picornavirus Cellular Remodeling: Doubling Down in Response to Viral-Induced Inflammation. Current Clinical Microbiology Reports, 2020, 7, 31-37.	3.4	5
4	Effects of TDP2/VPg Unlinkase Activity on Picornavirus Infections Downstream of Virus Translation. Viruses, 2020, 12, 166.	3.3	7
5	Picornaviruses and RNA Metabolism: Local and Global Effects of Infection. Journal of Virology, 2019, 93, .	3.4	8
6	Enterovirus Persistence in Cardiac Cells of Patients With Idiopathic Dilated Cardiomyopathy Is Linked to 5' Terminal Genomic RNA-Deleted Viral Populations With Viral-Encoded Proteinase Activities. Circulation, 2019, 139, 2326-2338.	1.6	39
7	VPg unlinkase/TDP2 in cardiovirus infected cells: Re-localization and proteolytic cleavage. Virology, 2018, 516, 139-146.	2.4	3
8	Direct and Indirect Effects on Viral Translation and RNA Replication Are Required for AUF1 Restriction of Enterovirus Infections in Human Cells. MBio, 2018, 9, .	4.1	16
9	Exploitation of nuclear functions by human rhinovirus, a cytoplasmic RNA virus. PLoS Pathogens, 2018, 14, e1007277.	4.7	16
10	Hijacking Host Functions for Translation and RNA Replication by Enteroviruses. , 2018, , .		2
11	Functional Consequences of RNA 5â€2-Terminal Deletions on Coxsackievirus B3 RNA Replication and Ribonucleoprotein Complex Formation. Journal of Virology, 2017, 91, .	3.4	27
12	Mammalian Polycistronic mRNAs and Disease. Trends in Genetics, 2017, 33, 129-142.	6.7	36
13	Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5′ and 3′ Noncoding Regions of Genomic RNAs. Viruses, 2016, 8, 39.	3.3	4
14	Diverse Strategies Used by Picornaviruses to Escape Host RNA Decay Pathways. Viruses, 2016, 8, 335.	3.3	18
15	Viral Determinants of miR-122-Independent Hepatitis C Virus Replication. MSphere, 2016, 1, .	2.9	28
16	Divergent Requirement for a DNA Repair Enzyme during Enterovirus Infections. MBio, 2016, 7, e01931-15.	4.1	13
17	Construction of a subgenomic CV-B3 replicon expressing emerald green fluorescent protein to assess viral replication of a cardiotropic enterovirus strain in cultured human cells. Journal of Virological Methods, 2016, 230, 1-8.	2.1	2
18	Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Frontiers in Microbiology, 2015, 6, 594.	3.5	73

IF # ARTICLE CITATIONS A 21st Century Perspective of Poliovirus Replication. PLoS Pathogens, 2015, 11, e1004825. Poliovirus RNA Replication and Genetic Complementation in Cell-Free Reactions., 2014, , 461-469. 20 5 History of Poliomyelitis and Poliomyelitis Research., 2014, , 1-14. Revelations from a bicistronic calcium channel gene. Cell Cycle, 2014, 13, 875-876. 22 2.6 3 Differential restriction patterns of mRNA decay factor AUF1 during picornavirus infections. Journal of General Virology, 2014, 95, 1488-1492. Modification of picornavirus genomic RNA using â€[~]clickâ€[™] chemistry shows that unlinking of the VPg 24 peptide is dispensable for translation and replication of the incoming viral RNA. Nucleic Acids 14.5 27 Research, 2014, 42, 2473-2482. In Memoriam John J. Holland (1929-2013): a Pioneer in Molecular Virology. Journal of Virology, 2014, 88, 3.4 5903-5905. Differential cleavage of IRES trans-acting factors (ITAFs) in cells infected by human rhinovirus. 26 2.4 9 Virology, 2014, 449, 35-44. Inhibition of Poliovirus-Induced Cleavage of Cellular Protein PCBP2 Reduces the Levels of Viral RNA 3.4 34 Replication. Journal of Virology, 2014, 88, 3192-3201. A novel Bcr-Ablâ€"mTORâ€"eIF4A axis regulates IRES-mediated translation of LEF-1. Open Biology, 2014, 4, 28 3.6 21 140180. Poliovirus infection induces the co-localization of cellular protein SRp20 with TIA-1, a cytoplasmic stress granule protein. Virus Research, 2013, 176, 223-231. Cellular mRNA Decay Protein AUF1 Negatively Regulates Enterovirus and Human Rhinovirus Infections. 30 3.4 58 Journal of Virology, 2013, 87, 10423-10434. Methods to study RNA virus molecular biology. Methods, 2013, 59, 165-166. 3.8 Viral Proteinase Requirements for the Nucleocytoplasmic Relocalization of Cellular Splicing Factor 32 3.4 38 SRp20 during Picornavirus Infections. Journal of Virology, 2013, 87, 2390-2400. Viral subversion of host functions for picornavirus translation and RNA replication. Future 1.8 Virology, 2012, 7, 179-191. An RNA virus hijacks an incognito function of a DNA repair enzyme. Proceedings of the National 34 7.1 77 Academy of Sciences of the United States of America, 2012, 109, 14634-14639. Picornavirus Modification of a Host mRNA Decay Protein. MBio, 2012, 3, e00431-12. 4.1 56 MDA5 Detects the Double-Stranded RNA Replicative Form in Picornavirus-Infected Cells. Cell Reports, 36 6.4 190

BERT L SEMLER

3

2012, 2, 1187-1196.

#	Article	IF	CITATIONS
37	Alphacoronavirus Transmissible Gastroenteritis Virus nsp1 Protein Suppresses Protein Translation in Mammalian Cells and in Cell-Free HeLa Cell Extracts but Not in Rabbit Reticulocyte Lysate. Journal of Virology, 2011, 85, 638-643.	3.4	73
38	Mechanistic Intersections Between Picornavirus Translation and RNA Replication. Advances in Virus Research, 2011, 80, 1-24.	2.1	24
39	SARS Coronavirus nsp1 Protein Induces Template-Dependent Endonucleolytic Cleavage of mRNAs: Viral mRNAs Are Resistant to nsp1-Induced RNA Cleavage. PLoS Pathogens, 2011, 7, e1002433.	4.7	308
40	Re-localization of Cellular Protein SRp20 during Poliovirus Infection: Bridging a Viral IRES to the Host Cell Translation Apparatus. PLoS Pathogens, 2011, 7, e1002127.	4.7	52
41	Engineered Picornavirus VPg-RNA Substrates: Analysis of a Tyrosyl-RNA Phosphodiesterase Activity. PLoS ONE, 2011, 6, e16559.	2.5	11
42	Delayed kinetics of poliovirus RNA synthesis in a human cell line with reduced levels of hnRNP C proteins. Virology, 2010, 400, 240-247.	2.4	40
43	Mechanistic Consequences of hnRNP C Binding to Both RNA Termini of Poliovirus Negative-Strand RNA Intermediates. Journal of Virology, 2010, 84, 4229-4242.	3.4	56
44	Stress-Inducible Alternative Translation Initiation of Human Cytomegalovirus Latency Protein pUL138. Journal of Virology, 2010, 84, 9472-9486.	3.4	62
45	Altered interactions between stem-loop IV within the 5′ noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: Effects on IRES-mediated translation and viral infectivity. Virology, 2009, 389, 45-58.	2.4	58
46	Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 518-528.	1.9	151
47	The linker domain of poly(rC) binding protein 2 is a major determinant in poliovirus cap-independent translation. Virology, 2008, 378, 243-253.	2.4	38
48	IRES-mediated pathways to polysomes: nuclear versus cytoplasmic routes. Trends in Microbiology, 2008, 16, 1-5.	7.7	64
49	Alternative polyadenylation signals in the 3′ non-coding region of a voltage-gated potassium channel gene are major determinants of mRNA isoform expression. Gene, 2008, 408, 133-145.	2.2	2
50	Cellular Protein Modification by Poliovirus: the Two Faces of Poly(rC)-Binding Protein. Journal of Virology, 2007, 81, 8919-8932.	3.4	135
51	A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO Journal, 2007, 26, 459-467.	7.8	156
52	Resistance is futile. Nature Genetics, 2005, 37, 665-666.	21.4	4
53	Functional Interaction of Heterogeneous Nuclear Ribonucleoprotein C with Poliovirus RNA Synthesis Initiation Complexes. Journal of Virology, 2005, 79, 3254-3266.	3.4	91
54	Allosteric Effects of Ligands and Mutations on Poliovirus RNA-Dependent RNA Polymerase. Journal of Virology, 2005, 79, 7803-7811.	3.4	24

#	Article	IF	CITATIONS
55	An Authentic 3′ Noncoding Region Is Necessary for Efficient Poliovirus Replication. Journal of Virology, 2005, 79, 11962-11973.	3.4	39
56	An internal ribosome entry site mediates translation of lymphoid enhancer factor-1. Rna, 2005, 11, 1385-1399.	3.5	33
57	Atomic Force Microscopy Analysis of Icosahedral Virus RNA. Journal of Molecular Biology, 2005, 347, 41-52.	4.2	94
58	Strand-Specific RNA Synthesis Determinants in the RNA-Dependent RNA Polymerase of Poliovirus. Journal of Virology, 2004, 78, 4397-4407.	3.4	17
59	Cell-Dependent Role for the Poliovirus 3′ Noncoding Region in Positive-Strand RNA Synthesis. Journal of Virology, 2004, 78, 1344-1351.	3.4	43
60	Structurally Distinct Elements Mediate Internal Ribosome Entry within the 5′-Noncoding Region of a Voltage-gated Potassium Channel mRNA. Journal of Biological Chemistry, 2004, 279, 47419-47430.	3.4	23
61	Differential Rescue of Poliovirus RNA Replication Functions by Genetically Modified RNA Polymerase Precursors. Journal of Virology, 2004, 78, 13007-13018.	3.4	12
62	Regulation of picornavirus gene expression. Microbes and Infection, 2004, 6, 702-713.	1.9	140
63	Poliovirus proves IRES-istible in vivo. Journal of Clinical Investigation, 2004, 113, 1678-1681.	8.2	9
64	Multimerization of poly(rC) binding protein 2 is required for translation initiation mediated by a viral IRES. Rna, 2004, 10, 1266-1276.	3.5	44
65	Functional conservation of the hydrophobic domain of polypeptide 3AB between human rhinovirus and poliovirus. Virology, 2003, 314, 432-442.	2.4	12
66	Distinct Poly(rC) Binding Protein KH Domain Determinants for Poliovirus Translation Initiation and Viral RNA Replication. Journal of Virology, 2002, 76, 12008-12022.	3.4	126
67	Subdomain Specific Functions of the RNA Polymerase Region of Poliovirus 3CD Polypeptide. Virology, 2002, 298, 200-213.	2.4	25
68	Requirements for Assembly of Poliovirus Replication Complexes and Negative-Strand RNA Synthesis. Journal of Virology, 2001, 75, 3841-3850.	3.4	71
69	A Group B Coxsackievirus/Poliovirus 5′ Nontranslated Region Chimera Can Act as an Attenuated Vaccine Strain in Mice. Journal of Virology, 2000, 74, 4047-4056.	3.4	51
70	Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. Rna, 1999, 5, 1570-1585.	3.5	133
71	Modulation of the RNA Binding and Protein Processing Activities of Poliovirus Polypeptide 3CD by the Viral RNA Polymerase Domain. Journal of Biological Chemistry, 1999, 274, 12867-12876.	3.4	55
72	Pyrimidine-Rich Region Mutations Compensate for a Stem-Loop V Lesion in the 5′ Noncoding Region of Poliovirus Genomic RNA. Virology, 1999, 264, 385-397.	2.4	6

#	Article	IF	CITATIONS
73	Requirements for RNA Replication of a Poliovirus Replicon by Coxsackievirus B3 RNA Polymerase. Journal of Virology, 1999, 73, 9413-9421.	3.4	32
74	Translation Initiation of a Cardiac Voltage-gated Potassium Channel by Internal Ribosome Entry. Journal of Biological Chemistry, 1998, 273, 20109-20113.	3.4	36
75	Rescue of Defective Poliovirus RNA Replication by 3AB-Containing Precursor Polyproteins. Journal of Virology, 1998, 72, 7191-7200.	3.4	63
76	RNA Determinants of Picornavirus Cap-Independent Translation Initiation. Seminars in Virology, 1997, 8, 242-255.	3.9	58
77	Translation and Replication Properties of the Human Rhinovirus Genomein Vivoandin Vitro. Virology, 1997, 229, 90-97.	2.4	56
78	Determinants of Membrane Association for Poliovirus Protein 3AB. Journal of Biological Chemistry, 1996, 271, 26810-26818.	3.4	138
79	Mutations in the Poliovirus 3CD Proteinase S1-Specificity Pocket Affect Substrate Recognition and RNA Binding. Virology, 1996, 218, 1-13.	2.4	40
80	Stem-Loop Structure Synergy in Binding Cellular Proteins to the 5′ Noncoding Region of Poliovirus RNA. Virology, 1995, 206, 923-934.	2.4	60
81	3CD Cleavage of the Poliovirus P1 Precursor: A Model for Complex Proteinase/Substrate Interactions. , 1993, , 225-244.		2
82	Alternate poliovirus nonstructural protein processing cascades generated by primary sites of 3C proteinase cleavage. Virology, 1992, 191, 309-320.	2.4	63
83	Self-cleaving proteases. Current Opinion in Cell Biology, 1991, 3, 1039-1045.	5.4	20
84	Poliovirus translation initiation: Differential effects of directed and selected mutations in the 5′ noncoding region of viral RNAs. Virology, 1991, 182, 742-752.	2.4	30
85	A genetic locus in mutant poliovirus genomes involved in overproduction of RNA polymerase and 3C proteinase. Virology, 1990, 174, 504-514.	2.4	17
86	Protein 3CD is the major poliovirus proteinase responsible for cleavage of the p1 capsid precursor. Virology, 1988, 166, 265-270.	2.4	374
87	Defined recombinants of poliovirus and coxsackievirus: Sequence-specific deletions and functional substitutions in the 5′-noncoding regions of viral RNAs. Virology, 1988, 162, 47-57.	2.4	94
88	The Development of New Poliovirus Vaccines Based on Molecular Cloning. , 1988, , 43-54.		2
89	in vitromolecular genetics as a tool for determining the differential cleavage specificities of the polivirus 3C proteinase. Nucleic Acids Research, 1987, 15, 2069-2088.	14.5	111
90	Expression of the poliovirus genome from infectious cDNA is dependent upon arrangements of eukaryotic and prokaryotic sequences in recombinant plasmids. Virology, 1987, 157, 560-564.	2.4	28

#	Article	IF	CITATIONS
91	Site-specific mutagenesis of cDNA clones expressing a poliovirus proteinase. Journal of Cellular Biochemistry, 1987, 33, 39-51.	2.6	40
92	An Infectious cDNA clone of the poliovirus sabin strain could be used as a stable repository and inoculum for the oral polio live vaccine. Virology, 1986, 151, 21-30.	2.4	59
93	Expression of a cloned gene segment of poliovirus in E. coli: Evidence for autocatalytic production of the viral proteinase. Cell, 1984, 37, 1063-1073.	28.9	126
94	Organization of the poliovirus genome and the sites for proteolytic processing. Biochemical Society Transactions, 1984, 12, 711-711.	3.4	0
95	Poliovirus RNA synthesis in Vitro: Structuralelements and antibody inhibition. Virology, 1983, 126, 624-635.	2.4	55
96	Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides. Virology, 1983, 128, 33-47.	2.4	178
97	A membrane-associated precursor to poliovirus VPg identified by immunoprecipitation with antibodies directed against a synthetic heptapeptide. Cell, 1982, 28, 405-412.	28.9	183
98	Cleavage sites in the polypeptide precursors of poliovirus protein P2-X. Virology, 1981, 114, 589-594.	2.4	62
99	Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature, 1981, 291, 547-553.	27.8	1,057
100	Protein-linked RNA of poliovirus is competent to form an initiation complex of translation in vitro. Nature, 1980, 287, 600-603.	27.8	39
101	Defective Interfering RNA Viruses and the Host-Cell Response. , 1980, , 137-192.		111
102	Virus protein changes and RNA termini alterations evolving during persistent infection. Cell, 1980, 19, 871-880.	28.9	66
103	The nucleotide sequence of the 5′ terminus of vesicular stomatitis virus RNA. Nucleic Acids Research, 1979, 6, 3923-3934.	14.5	16
104	Evolution of multiple genome mutations during long-term persistent infection by vesicular stomatitis virus. Cell, 1979, 16, 495-504.	28.9	180
105	Picornavirus Genome: an Overview. , 0, , 125-148.		17
106	Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site. , 0, , 157-169.		13
107	Proteins Involved in the Function of Picornavirus Internal Ribosomal Entry Sites. , O, , 171-183.		6
108	Processing Determinants and Functions of Cleavage Products of Picornavirus Polyproteins. , 0, , 185-197.		30

#	Article	IF	CITATIONS
109	Structure and Function of Picornavirus Proteinases. , 0, , 199-212.		17
110	Possible Unifying Mechanism of Picornavirus Genome Replication. , 0, , 225-246.		46
111	Molecular and Biological Basis of Picornavirus Taxonomy. , 0, , 15-24.		13
112	Role of Cellular Structures in Viral RNA Replication. , 0, , 247-253.		13
113	Picornavirus Genetics: an Overview. , 0, , 269-284.		9
114	Picornavirus Proteinase-Mediated Shutoff of Host Cell Translation: Direct Cleavage of a Cellular Initiation Factor. , 0, , 299-311.		14
115	Poliovirus-Mediated Shutoff of Host Translation: an Indirect Effect. , 0, , 313-320.		5
116	Effects of Viral Replication on Cellular Membrane Metabolism and Function. , 0, , 337-354.		6
117	Immunology of the Coxsackieviruses. , 0, , 391-403.		2
118	Translation and Host Cell Shutoff. , 0, , 113-133.		12
119	Genome Replication I: the Players. , 0, , 105-125.		Ο
120	Genome Replication II: the Process. , 0, , 127-140.		0