Blas Lavandero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3555982/publications.pdf Version: 2024-02-01

RIAS LAVANDERO

#	Article	IF	CITATIONS
1	Overwintering strategies and life-history traits of different populations of Aphidius platensis along a latitudinal gradient in Chile. Entomologia Generalis, 2022, 42, 127-145.	1.1	12
2	Bird-mediated effects of pest control services on crop productivity: a global synthesis. Journal of Pest Science, 2022, 95, 567-576.	1.9	24
3	Providing Alternative Hosts and Nectar to Aphid Parasitoids in a Plum Orchard to Determine Resource Complementarity and Distance Range Effect on Biological Control. Agronomy, 2022, 12, 77.	1.3	4
4	The Host-Plant Origin Affects the Morphological Traits and the Reproductive Behavior of the Aphid Parasitoid Aphelinus mali. Agronomy, 2022, 12, 101.	1.3	1
5	The use of cavity-nesting wild birds as agents of biological control in vineyards of Central Chile. Agriculture, Ecosystems and Environment, 2022, 334, 107975.	2.5	9
6	Inferring insect feeding patterns from sugar profiles: a comparison of statistical methods. Ecological Entomology, 2021, 46, 19-32.	1.1	3
7	Effect of the Genotypic Variation of an Aphid Host on the Endosymbiont Associations in Natural Host Populations. Insects, 2021, 12, 217.	1.0	3
8	Aphid honeydew may be the predominant sugar source for Aphidius parasitoids even in nectar-providing intercrops. Biological Control, 2021, 158, 104596.	1.4	11
9	Intraguild predation is independent of landscape context and does not affect the temporal dynamics of aphids in cereal fields. Journal of Pest Science, 2020, 93, 235-249.	1.9	14
10	Do hedgerows influence the natural biological control of woolly apple aphids in orchards?. Journal of Pest Science, 2020, 93, 219-234.	1.9	12
11	Population Genetic Structure of Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), in Different Localities and Host Plants in Chile. Insects, 2020, 11, 285.	1.0	5
12	Suitability and Profitability of a Cereal Aphid for the Parasitoid Aphidius platensis in the Context of Conservation Biological Control of Myzus persicae in Orchards. Insects, 2020, 11, 381.	1.0	8
13	Manipulation of Agricultural Habitats to Improve Conservation Biological Control in South America. Neotropical Entomology, 2019, 48, 875-898.	0.5	20
14	Interspecific competition among aphid parasitoids: molecular approaches reveal preferential exploitation of parasitized hosts. Scientific Reports, 2019, 9, 19641.	1.6	8
15	Forest fragmentation may endanger a plantâ€insect interaction: the case of the highly specialist native aphid <i>Neuquenaphis staryi</i> in Chile. Insect Conservation and Diversity, 2018, 11, 352-362.	1.4	5
16	The effect of landscape context on the biological control of Sitobion avenae: temporal partitioning response of natural enemy guilds. Journal of Pest Science, 2018, 91, 41-53.	1.9	21
17	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	3.3	401
18	Low bacterial community diversity in two introduced aphid pests revealed with 16S rRNA amplicon sequencing. PeerJ, 2018, 6, e4725.	0.9	17

BLAS LAVANDERO

#	Article	IF	CITATIONS
19	Diversity, frequency, and geographic distribution of facultative bacterial endosymbionts in introduced aphid pests. Insect Science, 2017, 24, 511-521.	1.5	53
20	Host genotype–endosymbiont associations and their relationship with aphid parasitism at the field level. Ecological Entomology, 2017, 42, 86-95.	1.1	16
21	Morphological variation of <i>Aphidius ervi</i> Haliday (Hymenoptera: Braconidae) associated with different aphid hosts. PeerJ, 2017, 5, e3559.	0.9	2
22	Expression differences in Aphidius ervi (Hymenoptera: Braconidae) females reared on different aphid host species. PeerJ, 2017, 5, e3640.	0.9	11
23	Abundancia y prevalencia de Aphidius avenae (Hymenoptera: Braconidae: Aphidiinae) en Chile. Ciencia E Investigacion Agraria, 2017, 44, 207-214.	0.2	3
24	Signatures of genetic bottleneck and differentiation after the introduction of an exotic parasitoid for classical biological control. Biological Invasions, 2016, 18, 565-581.	1.2	18
25	Aphid parasitoid generalism: development, assessment, and implications for biocontrol. Journal of Pest Science, 2016, 89, 7-20.	1.9	28
26	Does sexâ€biased dispersal account for the lack of geographic and hostâ€associated differentiation in introduced populations of an aphid parasitoid?. Ecology and Evolution, 2015, 5, 2149-2161.	0.8	16
27	Body mass and wing geometric morphology of the codling moth (Lepidoptera: Tortricidae) according to sex, location and host plant in the region of Maule, Chile. Ciencia E Investigacion Agraria, 2015, 42, 8-8.	0.2	3
28	Temporal variability of aphid biological control in contrasting landscape contexts. Biological Control, 2015, 90, 148-156.	1.4	44
29	Altitudinal Zonation of Aphid Parasitoids (Hymenoptera: Braconidae: Aphidiinae) in the Neotropical Region. Entomological News, 2014, 124, 86-97.	0.1	5
30	Measuring Local Genetic Variability in Populations of Codling Moth (Lepidoptera: Tortricidae) Across an Unmanaged and Commercial Orchard Interface. Environmental Entomology, 2014, 43, 520-527.	0.7	8
31	Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents. Evolutionary Applications, 2013, 6, 983-999.	1.5	43
32	Host acceptance behavior of the parasitoid Aphelinus mali and its aphid-host Eriosoma lanigerum on two Rosaceae plant species. Journal of Pest Science, 2013, 86, 659-667.	1.9	12
33	Genotype matching in a parasitoid–host genotypic food web: an approach for measuring effects of environmental change. Molecular Ecology, 2013, 22, 229-238.	2.0	23
34	Movement between crops and weeds: temporal refuges for aphidophagous insects in Central Chile. Ciencia E Investigacion Agraria, 2013, 40, 317-326.	0.2	10
35	Genetic Structure of the Aphid, <i>Chaetosiphon fragaefolii</i> , and Its Role as a Vector of the <i>Strawberry yellow edge virus</i> to a Native Strawberry, <i>Fragaria chiloensis</i> in Chile. Journal of Insect Science, 2012, 12, 1-13.	0.9	12
36	Estimating Gene Flow between Refuges and Crops: A Case Study of the Biological Control of Eriosoma lanigerum by Aphelinus mali in Apple Orchards. PLoS ONE, 2011, 6, e26694.	1.1	21

#	Article	IF	CITATIONS
37	Isolation and characterization of nine microsatellite loci from <i>Aphelinus mali</i> (Hymenoptera:) Tj ETQq1 3 549-552.	l 0.784314 1.5	rgBT /Overloo 4
38	Migration of coccinellids to alfalfa fields with varying adjacent vegetation in Central Chile. Ciencia E Investigacion Agraria, 2010, 37, .	0.2	15
39	Landscape composition modulates population genetic structure of <i>Eriosoma lanigerum</i> (Hausmann) on <i>Malus domestica</i> Borkh in central Chile. Bulletin of Entomological Research, 2009, 99, 97-105.	0.5	21
40	Species richness of herbivorous insects on Nothofagus trees in South America and New Zealand: The importance of chemical attributes of the host. Basic and Applied Ecology, 2009, 10, 10-18.	1.2	14
41	Genetic structure of highland papayas (Vasconcellea pubescens (Lenné et C. Koch) Badillo) cultivated along a geographic gradient in Chile as revealed by Inter Simple Sequence Repeats (ISSR). Genetic Resources and Crop Evolution, 2009, 56, 331-337.	0.8	26
42	Isolation and characterization of microsatellite loci from the woolly apple aphid <i>Eriosoma lanigerum</i> (Hemiptera: Aphididae: Eriosomatinae). Molecular Ecology Resources, 2009, 9, 302-304.	2.2	6
43	Coevolution and the adaptive value of autumn tree colours: colour preference and growth rates of a southern beech aphid. Journal of Evolutionary Biology, 2008, 21, 49-56.	0.8	26
44	Genetic variability and structure of Gomortega keule (Molina) Baillon (Gomortegaceae) relict populations: geographical and genetic fragmentation and its implications for conservation. Botany, 2008, 86, 1299-1310.	0.5	12
45	Population Genetic Structure of Codling Moth (Lepidoptera: Tortricidae) from Apple Orchards in Central Chile. Journal of Economic Entomology, 2008, 101, 190-198.	0.8	51
46	Population Genetic Structure of Codling Moth (Lepidoptera: Tortricidae) from Apple Orchards in Central Chile. Journal of Economic Entomology, 2008, 101, 190-198.	0.8	28
47	Increasing floral diversity for selective enhancement of biological control agents: A double-edged sward?. Basic and Applied Ecology, 2006, 7, 236-243.	1.2	160
48	Enhancing the effectiveness of the parasitoid Diadegma semiclausum (Helen): Movement after use of nectar in the field. Biological Control, 2005, 34, 152-158.	1.4	149
49	The need for effective marking and tracking techniques for monitoring the movements of insect predators and parasitoids. International Journal of Pest Management, 2004, 50, 147-151.	0.9	72
50	Effect of a cover crop on the aphid incidence is not explained by increased top-down regulation. PeerJ, 0, 10, e13299.	0.9	4