Bing Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3555744/publications.pdf

Version: 2024-02-01

119 papers	7,086 citations	41258 49 h-index	78 g-index
133	133 docs citations	133	4955
all docs		times ranked	citing authors

#	Article	IF	Citations
1	Carbon dioxide utilization with C–N bond formation: carbon dioxide capture and subsequent conversion. Energy and Environmental Science, 2012, 5, 6602.	15.6	446
2	Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chemical Communications, 2019, 55, 5408-5419.	2.2	423
3	Upgrading Carbon Dioxide by Incorporation into Heterocycles. ChemSusChem, 2015, 8, 52-62.	3.6	320
4	Equimolar CO ₂ Capture by Nâ€Substituted Amino Acid Salts and Subsequent Conversion. Angewandte Chemie - International Edition, 2012, 51, 11306-11310.	7.2	206
5	CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion. Energy and Environmental Science, 2011, 4, 3971.	15.6	205
6	Efficient chemical fixation of CO2 promoted by a bifunctional Ag2WO4/Ph3P system. Green Chemistry, 2014, 16, 1633.	4.6	185
7	Catalyst-free approach for solvent-dependent selective oxidation of organic sulfides with oxone. Green Chemistry, 2012, 14, 957.	4.6	146
8	4CzIPN- ^{<i>t</i>} Bu-Catalyzed Proton-Coupled Electron Transfer for Photosynthesis of Phosphorylated <i>N</i> -Heteroaromatics. Journal of the American Chemical Society, 2021, 143, 964-972.	6.6	135
9	Visible-Light Induced Radical Perfluoroalkylation/Cyclization Strategy To Access 2-Perfluoroalkylbenzothiazoles/Benzoselenazoles by EDA Complex. Organic Letters, 2019, 21, 4019-4024.	2.4	121
10	Recent advances in visible-light-mediated organic transformations in water. Green Chemistry, 2021, 23, 232-248.	4.6	119
11	Silver-catalyzed decarboxylative radical cascade cyclization toward benzimidazo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones. Chemical Communications, 2019, 55, 2861-2864.	2.2	114
12	In situ hydrogenation of captured CO2 to formate with polyethyleneimine and Rh/monophosphine system. Green Chemistry, 2013, 15, 2825.	4.6	112
13	Photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones. Chinese Journal of Catalysis, 2021, 42, 1921-1943.	6.9	109
14	Copper(I)@Carbon-Catalyzed Carboxylation of Terminal Alkynes with CO ₂ at Atmospheric Pressure. ACS Catalysis, 2015, 5, 3940-3944.	5.5	101
15	Synthesis of bimagnetic ionic liquid and application for selective aerobic oxidation of aromatic alcohols under mild conditions. Chemical Communications, 2011, 47, 2697.	2.2	100
16	Carboxylation of olefins/alkynes with CO2 to industrially relevant acrylic acid derivatives. Journal of CO2 Utilization, 2013, 1, 60-68.	3.3	99
17	Silver tungstate: a single-component bifunctional catalyst for carboxylation of terminal alkynes with CO ₂ in ambient conditions. Green Chemistry, 2015, 17, 474-479.	4.6	98
18	Acyl Radicals from α-Keto Acids: Metal-Free Visible-Light-Promoted Acylation of Heterocycles. Organic Letters, 2021, 23, 2976-2980.	2.4	96

#	Article	IF	Citations
19	Visible light-induced recyclable g-C ₃ N ₄ catalyzed thiocyanation of C(sp ^{)â€"H bonds in sustainable solvents. Green Chemistry, 2021, 23, 3677-3682.}	4.6	96
20	Cluster-based MOFs with accelerated chemical conversion of CO ₂ through C–C bond formation. Chemical Communications, 2017, 53, 6013-6016.	2.2	89
21	Recent applications of polyoxometalates in CO2 capture and transformation. Journal of CO2 Utilization, 2018, 26, 314-322.	3.3	87
22	Metalâ€Free Visibleâ€Light Promoted Radical Cyclization to Access Perfluoroalkylâ€Substituted Benzimidazo[2,1â€ <i>a</i>]isoquinolinâ€6(5 <i>H</i>)â€ones and Indolo[2,1â€ <i>a</i>]isoquinolinâ€6(5 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2019, 361, 5176-518	2.1 31.	87
23	A Visibleâ€Lightâ€Promoted Metalâ€Free Strategy towards Arylphosphonates: Organicâ€Dyeâ€Catalyzed Phosphorylation of Arylhydrazines with Trialkylphosphites. Advanced Synthesis and Catalysis, 2018, 360, 4807-4813.	2.1	82
24	Carboxylation of terminal alkynes at ambient CO2 pressure in ethylene carbonate. Green Chemistry, 2013, 15, 2401.	4.6	78
25	Experimental and theoretical studies on imidazolium ionic liquid-promoted conversion of fructose to 5-hydroxymethylfurfural. Green Chemistry, 2012, 14, 2752.	4.6	77
26	Silver-Catalyzed Radical Cascade Cyclization toward 1,5-/1,3-Dicarbonyl Heterocycles: An Atom-/Step-Economical Strategy Leading to Chromenopyridines and Isoxazole-/Pyrazole-Containing Chroman-4-Ones. Organic Letters, 2018, 20, 6157-6160.	2.4	75
27	Recent applications of radical cascade reaction in the synthesis of functionalized 1-indenones. Chinese Chemical Letters, 2019, 30, 1361-1368.	4.8	75
28	Copper-Catalyzed Radical Cascade Cyclization To Access 3-Sulfonated Indenones with the AIE Phenomenon. Journal of Organic Chemistry, 2018, 83, 14419-14430.	1.7	74
29	Nitriles as radical acceptors in radical cascade reactions. Organic Chemistry Frontiers, 2021, 8, 445-465.	2.3	71
30	Silver-catalyzed decarboxylative cascade radical cyclization of <i>tert</i> -carboxylic acids and <i>o</i> -(allyloxy)arylaldehydes towards chroman-4-one derivatives. Organic Chemistry Frontiers, 2018, 5, 2925-2929.	2.3	70
31	Phosphorus Radical-Initiated Cascade Reaction To Access 2-Phosphoryl-Substituted Quinoxalines. Journal of Organic Chemistry, 2018, 83, 11727-11735.	1.7	69
32	Recyclable Perovskite as Heterogeneous Photocatalyst for Aminomethylation of Imidazoâ€Fused Heterocycles. Advanced Synthesis and Catalysis, 2020, 362, 2143-2149.	2.1	65
33	A general electron donor–acceptor complex for photoactivation of arenes <i>via</i> thianthrenation. Chemical Science, 2022, 13, 5659-5666.	3.7	65
34	Highly Efficient SO ₂ Absorption and Its Subsequent Utilization by Weak Base/Polyethylene Glycol Binary System. Environmental Science & Environmental Science & 1598-1605.	4.6	64
35	Ionic Liquid from Vitamin B1 Analogue and Heteropolyacid: A Recyclable Heterogeneous Catalyst for Dehydrative Coupling in Organic Carbonate. ACS Sustainable Chemistry and Engineering, 2019, 7, 3727-3732.	3.2	64
36	Copper-catalyzed one-pot three-component thioamination of 1,4-naphthoquinone. Organic Chemistry Frontiers, 2019, 6, 1476-1480.	2.3	64

#	Article	IF	CITATIONS
37	Ethylene Glycol: A Green Solvent for Visible Lightâ€Promoted Aerobic Transition Metalâ€Free Cascade Sulfonation/Cyclization Reaction. Advanced Synthesis and Catalysis, 2020, 362, 2609-2614.	2.1	64
38	Melamine-based mesoporous organic polymers as metal-Free heterogeneous catalyst: Effect of hydroxyl on CO 2 capture and conversion. Journal of CO2 Utilization, 2017, 22, 9-14.	3.3	63
39	Visibleâ€Lightâ€Promoted Transitionâ€Metalâ€Free Approach toward Phosphorylâ€Substituted Dihydroisoquinolones via Cascade Phosphorylation/Cyclization of N â€Allylbenzamides. Advanced Synthesis and Catalysis, 2019, 361, 3712-3717.	2.1	61
40	Metal-free sulfonyl radical-initiated cascade cyclization to access sulfonated indolo[1,2- <i>a</i>]quinolines. Chemical Communications, 2019, 55, 12615-12618.	2.2	59
41	Visible-light-promoted oxidative decarboxylation of arylacetic acids in air: Metal-free synthesis of aldehydes and ketones at room temperature. Chinese Chemical Letters, 2020, 31, 1863-1867.	4.8	59
42	6Ï€-Electrocyclization in water: microwave-assisted synthesis of polyheterocyclic-fused quinoline-2-thiones. Green Chemistry, 2020, 22, 4445-4449.	4.6	58
43	Recyclable Cu@C ₃ N ₄ -Catalyzed Hydroxylation of Aryl Boronic Acids in Water under Visible Light: Synthesis of Phenols under Ambient Conditions and Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 2682-2687.	3.2	57
44	Copper-Catalyzed C4-H Regioselective Phosphorylation/Trifluoromethylation of Free 1-Naphthylamines. Organic Letters, 2019, 21, 486-489.	2.4	56
45	Mn(III)â€Mediated Regioselective 6â€ <i>endo</i> â€trig Radical Cyclization of <i>o</i> â€Vinylaryl Isocyanides to Access 2â€Functionalized Quinolines. Advanced Synthesis and Catalysis, 2020, 362, 688-694.	2.1	55
46	Catalytic conversion of carbon dioxide to carboxylic acid derivatives., 2015, 5, 17-33.		54
47	Visibleâ€Lightâ€Induced Metalâ€Free Synthesis of 2â€Phosphorylated Thioflavones in Water. ChemSusChem, 2020, 13, 298-303.	3.6	54
48	Tert-butyl nitrite: a metal-free radical initiator for aerobic cleavage of benzylic C bonds in compressed carbon dioxide. Green Chemistry, 2011, 13, 541.	4.6	53
49	Arylaminomethyl Radical-Initiated Cascade Annulation Reaction of Quinoxalin- $2(1 < i > H < /i >)$ -ones Catalyzed by Recyclable Photocatalyst Perovskite. Organic Letters, 2020, 22, 6960-6965.	2.4	52
50	Ce(<scp>iii</scp>)-Containing tungstotellurate(<scp>vi</scp>) with a sandwich structure: an efficient Lewis acid–base catalyst for the condensation cyclization of 1,3-diketones with hydrazines/hydrazides or diamines. Inorganic Chemistry Frontiers, 2018, 5, 2472-2477.	3.0	50
51	Visible-light-induced metal-free cascade cyclization of $\langle i \rangle N \langle i \rangle$ -arylpropiolamides to 3-phosphorylated, trifluoromethylated and thiocyanated azaspiro [4.5] trienones. Organic Chemistry Frontiers, 2021, 8, 760-766.	2.3	50
52	Metal-Free Photosynthesis of Alkylated Benzimidazo [2,1- $<$ i>>a)]isoquinoline-6(5 $<$ i>H)-ones and Indolo [2,1- $<$ i>a)]isoquinolin-6(5 $<$ i>H)-ones in PEG-200. Journal of Organic Chemistry, 2021, 86, 9055-9066.	1.7	50
53	Metal-free chemoselective oxidation of sulfides by in situ generated Koser's reagent in aqueous media. Tetrahedron Letters, 2014, 55, 1818-1821.	0.7	49
54	Recent Advances in Organocatalystâ€Mediated Benzannulation Reactions. Advanced Synthesis and Catalysis, 2020, 362, 4010-4026.	2.1	49

#	Article	IF	CITATIONS
55	Applications of <i>H</i> -phosphonates for C element bond formation. Pure and Applied Chemistry, 2019, 91, 33-41.	0.9	47
56	Photoinduced Decatungstate-Catalyzed C-H Functionalization. Chinese Journal of Organic Chemistry, 2020, 40, 3620.	0.6	47
57	Equimolar Carbon Absorption by Potassium Phthalimide and In Situ Catalytic Conversion Under Mild Conditions. ChemSusChem, 2014, 7, 1484-1489.	3.6	45
58	Radical Reactions for the Synthesis of 3â€Substituted Chromanâ€4â€ones. European Journal of Organic Chemistry, 2020, 2020, 1588-1597.	1.2	45
59	Polymerization-Enhanced Photocatalysis for the Functionalization of C(sp ³)–H Bonds. ACS Catalysis, 2022, 12, 126-134.	5 . 5	43
60	Atmospheric Pressure of CO ₂ as Protecting Reagent and Reactant: Efficient Synthesis of Oxazolidinâ€2â€ones with Carbamate Salts, Aldehydes and Alkynes. Advanced Synthesis and Catalysis, 2016, 358, 90-97.	2.1	42
61	Copper(I)-based ionic liquid-catalyzed carboxylation of terminal alkynes with CO2 at atmospheric pressure. Tetrahedron Letters, 2015, 56, 7059-7062.	0.7	41
62	A metal-free visible-light-promoted phosphorylation/cyclization reaction in water towards 3-phosphorylated benzothiophenes. Organic Chemistry Frontiers, 2020, 7, 1884-1889.	2.3	40
63	Perovskite as Recyclable Photocatalyst for Annulation Reaction of $\langle i \rangle N \langle i \rangle$ -Sulfonyl Ketimines. Organic Letters, 2022, 24, 299-303.	2.4	40
64	An External-Catalyst-Free Trifluoromethylation/Cyclization Strategy To Access Trifluoromethylated-Dihydroisoquinolinones/Indolines with Togni Reagent II. Organic Letters, 2019, 21, 1863-1867.	2.4	38
65	Functionalization of imidazo[1,2- <i>a</i>]pyridines <i>via</i> radical reactions. New Journal of Chemistry, 2021, 45, 9302-9314.	1.4	38
66	Copper(<scp>i</scp>)/phosphine-catalyzed tandem carboxylation/annulation of terminal alkynes under ambient pressure of CO ₂ : one-pot access to 3a-hydroxyisoxazolo[3,2-a]isoindol-8(3aH)-ones. Green Chemistry, 2015, 17, 4061-4067.	4.6	37
67	H3PMo12O40-catalyzed coupling of diarylmethanols with epoxides/diols/aldehydes toward polyaryl-substituted aldehydes. Chinese Chemical Letters, 2020, 31, 3233-3236.	4.8	37
68	Visible-light-induced direct 3-ethoxycarbonylmethylation of 2-aryl-2 <i>H</i> ionidazoles in water. Organic Chemistry Frontiers, 2022, 9, 1445-1450.	2.3	37
69	Magnetic base catalysts for the chemical fixation of carbon dioxide to quinazoline-2,4(1H,3H)-diones. RSC Advances, 2014, 4, 28941-28946.	1.7	36
70	Silver atalyzed Radical Cascade Cyclization of Unactivated Alkenes towards Cyclopenta[c]quinolines. Advanced Synthesis and Catalysis, 2019, 361, 4483-4488.	2.1	36
71	Visible-light-promoted catalyst-/additive-free synthesis of aroylated heterocycles in a sustainable solvent. Green Chemistry, 2022, 24, 1732-1737.	4.6	36
72	Cyanuric Acidâ€Based Organocatalyst for Utilization of Carbon Dioxide at Atmospheric Pressure. ChemSusChem, 2017, 10, 1080-1084.	3.6	35

#	Article	IF	CITATIONS
73	An Atomâ€Economical Route to Substituted βâ€Arylethyl Ketones: Phosphomolybdic Acidâ€Catalyzed Carbohydroxylation of Terminal Alkynes in Organic Carbonate. Advanced Synthesis and Catalysis, 2017, 359, 926-932.	2.1	34
74	Advances of <i>N</i> -Hydroxyphthalimide Esters in Photocatalytic Alkylation Reactions. Chinese Journal of Organic Chemistry, 2021, 41, 4661.	0.6	34
7 5	Direct benzylation reactions from benzyl halides enabled by transition-metal-free photocatalysis. Chinese Chemical Letters, 2022, 33, 5074-5079.	4.8	33
76	Transition-metal-free three-component acetalation-pyridylation of alkenes via photoredox catalysis. Chinese Journal of Catalysis, 2022, 43, 571-583.	6.9	32
77	Phosphomolybdic acid as a bifunctional catalyst for Friedel–Crafts type dehydrative coupling reaction. Applied Organometallic Chemistry, 2018, 32, e4450.	1.7	31
78	Photocatalytic transition-metal-free direct 3-alkylation of 2-aryl-2 <i>H</i> -indazoles in dimethyl carbonate. Organic Chemistry Frontiers, 2021, 8, 3286-3291.	2.3	31
79	Protic ionic liquid-promoted synthesis of dimethyl carbonate from ethylene carbonate and methanol. Chinese Chemical Letters, 2020, 31, 667-672.	4.8	30
80	Radical Cascade Reactions of β,γâ€Unsaturated Hydrazones/Oximes. Advanced Synthesis and Catalysis, 2021, 363, 4640-4666.	2.1	30
81	Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen. Chinese Journal of Catalysis, 2021, 42, 1700-1711.	6.9	30
82	Cu _{1.5} PMo ₁₂ O ₄₀ atalyzed condensation cyclization for the synthesis of substituted pyrazoles. Applied Organometallic Chemistry, 2018, 32, e4532.	1.7	29
83	Visible-Light-Induced Phosphorylation of Imidazo-Fused Heterocycles under Metal-Free Conditions. Journal of Organic Chemistry, 2020, 85, 14744-14752.	1.7	29
84	Oneâ€pot synthesis of trifluoromethylated benzimidazolines catalyzed by phosphotungstic acid with a low catalyst loading. Applied Organometallic Chemistry, 2018, 32, e4314.	1.7	28
85	Synthesis of Phosphoryl‧ubstituted Benzimidazo[2,1â€ <i>a</i>]isoquinolinâ€6(5 <i>H</i>)â€ones from 2â€Arylbenzoimidazoles and Diarylphosphine Oxides. Asian Journal of Organic Chemistry, 2019, 8, 2042-2045.	1.3	26
86	Recyclable Carbon Nitride <scp>Nanosheetâ€Photocatalyzed</scp> Aminomethylation of Imidazo[1,2â€ <i>a</i>]pyridines in Green Solvent. Chinese Journal of Chemistry, 2022, 40, 97-103.	2.6	26
87	1-Acryloyl-2-cyanoindole: A Skeleton for Visible-Light-Induced Cascade Annulation. Organic Letters, 2022, 24, 3014-3018.	2.4	25
88	Visible-light-promoted organic dye-catalyzed sulfidation and phosphorylation of arylhydrazines toward aromatic sulfides and diarylphosphoryl hydrazides. New Journal of Chemistry, 2019, 43, 13642-13646.	1.4	24
89	Non-corrosive heteropolyacid-based recyclable ionic liquid catalyzed direct dehydrative coupling of alcohols with alcohols or alkenes. Molecular Catalysis, 2019, 468, 80-85.	1.0	22
90	Application of $\langle i \rangle \hat{l} \pm \langle i \rangle$ -Keto Acids in Metal-Free Photocatalysis. Chinese Journal of Organic Chemistry, 2021, 41, 4575.	0.6	21

#	Article	IF	CITATIONS
91	<i>In situ</i> Acidic Carbon Dioxide/Ethanol System for Selective Oxybromination of Aromatic Ethers Catalyzed by Copper Chloride. Advanced Synthesis and Catalysis, 2011, 353, 3187-3195.	2.1	20
92	Silver-mediated radical phosphorylation/cyclization of <i>N</i> -allylbenzamides to access phosphoryl-substituted dihydroisoquinolones. New Journal of Chemistry, 2019, 43, 12221-12224.	1.4	20
93	Indirect conversion of ambient pressure CO ₂ into oxazolidin-2-ones by a copper-based magnetic nanocatalyst. RSC Advances, 2016, 6, 87179-87187.	1.7	19
94	Microwave-assisted controllable synthesis of 2-acylbenzothiazoles and bibenzo[b][1,4]thiazines from aryl methyl ketones and disulfanediyldianilines. Chinese Chemical Letters, 2021, 32, 3544-3547.	4.8	19
95	Switchable aroylation and diaroylation of allyl sulfones with aldehydes enabled by decatungstate photocatalysis. Green Chemistry, 2022, 24, 5614-5619.	4.6	18
96	Transition-metal-free sulfonylations of methylthiolated alkynones to synthesize 3-sulfonylated thioflavones. New Journal of Chemistry, 2020, 44, 14786-14790.	1.4	17
97	Visible lightâ€promoted recyclable carbon nitrideâ€catalyzed dioxygenation of β,γâ€unsaturated oximes. Advanced Synthesis and Catalysis, 0, , .	2.1	17
98	Recent advances in graphene oxide catalyzed organic transformations. Chinese Chemical Letters, 2022, 33, 2354-2362.	4.8	17
99	Ce(III)/Photoassisted Synthesis of Amides from Carboxylic Acids and Isocyanates. Organic Letters, 2022, 24, 2431-2435.	2.4	17
100	A Type of Atypical AlEgen Used for One-Photon/Two-Photon Targeted Imaging in Live Cells. ACS Applied Bio Materials, 2020, 3, 505-511.	2.3	16
101	Oxidation of aromatic sulfides with molecular oxygen: Controllable synthesis of sulfoxides or sulfones. Chinese Chemical Letters, 2020, 31, 2991-2992.	4.8	16
102	PEG400-enhanced synthesis of gem-dichloroaziridines and gem-dichlorocyclopropanes via in situ generated dichlorocarbene. RSC Advances, 2013, 3, 19009.	1.7	15
103	Visible-light-promoted decarboxylative radical cascade cyclization to acylated benzimidazo/indolo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones in water. RSC Advances, 2022, 12, 19736-19740.	1.7	15
104	Decatungstate-photocatalyzed direct coupling of inert alkanes and quinoxalin- $2(1 < i > H < /i >)$ -ones with H ₂ evolution. Organic Chemistry Frontiers, 2022, 9, 2728-2733.	2.3	14
105	Divergent g-C3N4-catalyzed Reactions of Quinoxalin-2(1H)-ones with N-Aryl Glycines under Visible Light: Solvent-Controlled Hydroaminomethylation and Annulation. ACS Sustainable Chemistry and Engineering, 2020, , .	3.2	13
106	<i>N</i> â€Alkoxyphtalimides as Versatile Alkoxy Radical Precursors in Modern Organic Synthesis. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	13
107	Propylene oxide as a dehydrating agent: potassium carbonate-catalyzed carboxylative cyclization of propylene glycol with CO ₂ in a polyethylene glycol/CO ₂ biphasic system. RSC Advances, 2016, 6, 32400-32404.	1.7	12
108	Renewable aqueous ammonia from biogas slurry for carbon capture: Chemical composition and CO2 absorption rate. International Journal of Greenhouse Gas Control, 2018, 77, 46-54.	2.3	12

#	Article	IF	CITATIONS
109	Metal-promoted Carboxylation of Alkynes/allenes with Carbon Dioxide. Current Green Chemistry, 2015, 2, 14-25.	0.7	11
110	Visible-light-induced cyclization of cyclic $\langle i \rangle N \langle i \rangle$ -sulfonyl ketimines to $\langle i \rangle N \langle i \rangle$ -sulfonamide fused imidazolidines. Organic and Biomolecular Chemistry, 2022, 20, 3798-3802.	1.5	10
111	A Polyniobotungstate-Based Hybrid for Visible-Light-Induced Phosphorylation of <i>N</i> -Aryl-Tetrahydroisoquinoline. ACS Applied Materials & Interfaces, 2022, 14, 19278-19284.	4.0	7
112	Visible-Light-Promoted Transition-Metal-Free Construction of 3-Perfluoroalkylated Thioflavones. Frontiers in Chemistry, 0, 10 , .	1.8	6
113	On Topological Analysis of Graphite Carbon Nitride via Degree Based Coindices. Polycyclic Aromatic Compounds, 2022, 42, 2777-2788.	1.4	5
114	Visible-Light-Induced Decarboxylation of Dioxazolones to Phosphinimidic Amides and Ureas. Molecules, 2022, 27, 3648.	1.7	5
115	Selective Oxidation of Sulfides to Sulfoxides with Tert-Butylnitrite as an Alternative Oxidant. Current Organic Synthesis, 2014, 11, 156-160.	0.7	4
116	Metal-/catalyst-free one-pot three-component thioamination of 1,4-naphthoquinone in a sustainable solvent. New Journal of Chemistry, 2022, 46, 4550-4554.	1.4	3
117	Reduction of Carbon Dioxide to Energy-Rich Products. ACS Symposium Series, 2011, , 143-174.	0.5	1
118	Polyethylene glycol radical-initiated aerobic propargylic oxidation in dense carbon dioxide. Journal of Energy Chemistry, 2013, 22, 363-367.	7.1	1
119	CuCl-photocatalyzed C–H amination of benzoxazoles. Organic and Biomolecular Chemistry, 2022, 20, 5125-5128.	1.5	1