
Pravin H Wadekar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3555624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep Eutectic Solvent Functionalized Graphene Composite as an Extremely High Potency Flame Retardant. ACS Applied Materials & Interfaces, 2017, 9, 35319-35324.	8.0	88
2	Novel Approach toward the Synthesis of a Phosphorus-Functionalized Polymer-Based Graphene Composite as an Efficient Flame Retardant. ACS Sustainable Chemistry and Engineering, 2019, 7, 11745-11753.	6.7	78
3	Novel approach towards the synthesis of carbon-based transparent highly effective flame retardant. Carbon, 2018, 139, 205-209.	10.3	75
4	Oneâ€Pot Synthesis of Sulfur and Nitrogen Coâ€Functionalized Graphene Material using Deep Eutectic Solvents for Supercapacitors. ChemSusChem, 2019, 12, 3326-3335.	6.8	44
5	Graphene-based intumescent flame retardant on cotton fabric. Journal of Materials Science, 2020, 55, 14197-14210.	3.7	36
6	A novel chemical reduction/co-precipitation method to prepare sulfur functionalized reduced graphene oxide for lithium-sulfur batteries. Electrochimica Acta, 2020, 344, 136147.	5.2	35
7	Graphene-bentonite supported free-standing, flexible membrane with switchable wettability for selective oil–water separation. Separation and Purification Technology, 2021, 266, 118569.	7.9	34
8	Synthesis of Aqueous Dispersible Reduced Graphene Oxide by the Reduction of Graphene Oxide in Presence of Carbonic Acid. ChemistrySelect, 2018, 3, 5630-5638.	1.5	30
9	Biomassâ€Đerived Lignocellulosic Graphene Composite: Novel Approach for Removal of Oil and Organic Solvent. ChemistrySelect, 2019, 4, 4568-4574.	1.5	27
10	Wasteâ€Derived Heteroatomâ€Doped Activated Carbon/Manganese Dioxide Trioâ€Composite for Supercapacitor Applications. Energy Technology, 2020, 8, 1901402.	3.8	27
11	Synthesis of sulfur doped carbon nanoparticle for the improvement of supercapacitive performance. Journal of Energy Storage, 2020, 32, 101783.	8.1	24
12	Novel approach towards the synthesis of highly efficient flame retardant electrode and oil/organic solvent absorber. Chemosphere, 2020, 246, 125785.	8.2	21
13	MnO2@Polyaniline-CNT-boron-doped graphene as a freestanding binder-free electrode material for supercapacitor. Journal of Materials Science: Materials in Electronics, 2020, 31, 8385-8393.	2.2	21
14	Oneâ€Pot Synthetic Approach for Magnetically Separable Graphene Nanocomposite for Dye Degradation. ChemistrySelect, 2020, 5, 1516-1525.	1.5	19
15	Super-hydrophobic carrageenan cross-linked graphene sponge for recovery of oil and organic solvent from their water mixtures. Polymer Testing, 2020, 90, 106743.	4.8	15
16	Eco-friendly biowaste-derived graphitic carbon as black pigment for conductive paint. Progress in Organic Coatings, 2020, 147, 105872.	3.9	12
17	Oneâ€step Preparation of Conducting Polymer/Metal Oxide Doped RGO Trinary Composite for Supercapacitor Applications. ChemistrySelect, 2020, 5, 11769-11777.	1.5	10
18	The Effect of Bioâ€inspired Coâ€electrolytes for Enhancement of Electrochemical Properties of Supercapacitors. Energy and Environmental Materials, 2020, 3, 429-435.	12.8	9

PRAVIN H WADEKAR

#	Article	IF	CITATIONS
19	Synthesis of Iodineâ€Functionalized Graphene Electrocatalyst Using Deep Eutectic Solvents for Oxygen Reduction Reaction and Supercapacitors. Energy Technology, 2021, 9, 2000750.	3.8	5
20	Greener approach towards the synthesis of graphene nanosheet and its application in supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 13100-13107.	2.2	5
21	Boron Nitride doped Chitosan Functionalized Graphene for an Efficient Dye Degradation. ChemistrySelect, 2021, 6, 7956-7963.	1.5	4
22	Synthesis of High Concentration Stable Water Dispersion of Exfoliated Activated Graphite for Supercapacitor Application. ChemistrySelect, 2021, 6, 5949-5953.	1.5	0