Thomas M Orlando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3555413/publications.pdf Version: 2024-02-01

THOMAS M OPLANDO

#	Article	IF	CITATIONS
1	Indirect solar receiver development for the thermal extraction of H2O(v) from lunar regolith: Heat and mass transfer modeling. Acta Astronautica, 2022, 190, 365-376.	3.2	4
2	Electron-Stimulated Formation and Release of Molecular Hydrogen and Oxygen from Boehmite Nanoplatelet Films. Journal of Physical Chemistry C, 2022, 126, 2542-2547.	3.1	2
3	Particles and Photons as Drivers for Particle Release from the Surfaces of the Moon and Mercury. Space Science Reviews, 2022, 218, 1.	8.1	19
4	Temperature programmed desorption comparison of lunar regolith to lunar regolith simulants LMS-1 and LHS-1. Earth and Planetary Science Letters, 2022, 592, 117632.	4.4	3
5	Molecular water detected on the sunlit Moon by SOFIA. Nature Astronomy, 2021, 5, 121-127.	10.1	104
6	Photon-In/Photon-Out X-ray Free-Electron Laser Studies of Radiolysis. Applied Sciences (Switzerland), 2021, 11, 701.	2.5	1
7	Characterization of H2O transport through Johnson Space Center number 1A lunar regolith simulant at low pressure for <i>in-situ</i> resource utilization. Physics of Fluids, 2021, 33, .	4.0	4
8	Inâ€flight particulate matter concentrations in commercial flights are likely lower than other indoor environments. Indoor Air, 2021, 31, 1484-1494.	4.3	3
9	Water Group Exospheres and Surface Interactions on the Moon, Mercury, and Ceres. Space Science Reviews, 2021, 217, 1.	8.1	21
10	Thermal evolution of water and hydrogen from Apollo lunar regolith grains. Earth and Planetary Science Letters, 2021, 571, 117107.	4.4	4
11	Advection diffusion model for gas transport within a packed bed of JSC-1A regolith simulant. Acta Astronautica, 2020, 169, 32-39.	3.2	8
12	Photonâ€Stimulated Desorption of MgS as a Potential Source of Sulfur in Mercury's Exosphere. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006479.	3.6	5
13	Electron Spin-Polarization Dependent Damage to Chiral Amino Acid <scp>l</scp> -Histidine. Journal of Physical Chemistry Letters, 2020, 11, 10182-10187.	4.6	10
14	Efficient Intermolecular Energy Exchange and Soft Ionization of Water at Nanoplatelet Interfaces. Journal of Physical Chemistry Letters, 2020, 11, 10088-10093.	4.6	4
15	Investigation of Water Interactions With Apollo Lunar Regolith Grains. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006147.	3.6	11
16	A New In Situ Quasi-continuous Solar-wind Source of Molecular Water on Mercury. Astrophysical Journal Letters, 2020, 891, L43.	8.3	16
17	Direct Damage of Deoxyadenosine Monophosphate by Low Energy Electrons Probed by X-Ray Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2020, 124, 1585-1591.	2.6	6
18	Electron- and Thermal-Stimulated Synthesis of Water on Boehmite (γ-AlOOH) Nanoplates. Journal of Physical Chemistry C, 2019, 123, 18986-18992.	3.1	8

#	Article	IF	CITATIONS
19	A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron―and Cyanideâ€Rich Early Earth Scenario. Angewandte Chemie - International Edition, 2019, 58, 16981-16987.	13.8	26
20	Characterization and Simulation of Natural Pyrite Surfaces: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 26397-26405.	3.1	13
21	A Stark Contrast to Modern Earth: Phosphate Mineral Transformation and Nucleoside Phosphorylation in an Iron―and Cyanideâ€Rich Early Earth Scenario. Angewandte Chemie, 2019, 131, 17137-17143.	2.0	3
22	Prebiotic Phosphorylation of Uridine using Diamidophosphate in Aerosols. Scientific Reports, 2019, 9, 13527.	3.3	13
23	Low energy secondary electron induced damage of condensed nucleotides. Journal of Chemical Physics, 2019, 150, 204709.	3.0	11
24	Space Weathering Induced Via Microparticle Impacts: 2. Dust Impact Simulation and Meteorite Target Analysis. Journal of Geophysical Research E: Planets, 2019, 124, 1084-1099.	3.6	15
25	Space Weathering Induced Via Microparticle Impacts: 1. Modeling of Impact Velocities and Flux of Micrometeoroids From Cometary, Asteroidal, and Interstellar Origin in the Main Asteroid Belt and the Nearâ€Earth Environment. Journal of Geophysical Research E: Planets, 2019, 124, 1044-1083.	3.6	2
26	Sweep Jet Collection Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization for Lipid Analysis Applications. Journal of the American Society for Mass Spectrometry, 2019, 30, 647-658.	2.8	7
27	Molecular Water Adsorption and Reactions on α-Al ₂ O ₃ (0001) and α-Alumina Particles. Journal of Physical Chemistry C, 2018, 122, 9540-9551.	3.1	25
28	Reactive Adsorption of Humid SO ₂ on Metal–Organic Framework Nanosheets. Journal of Physical Chemistry C, 2018, 122, 10413-10422.	3.1	35
29	Catalyst: Radiation Effects on Volatiles and Exploration of Asteroids and the Lunar Surface. CheM, 2018, 4, 8-12.	11.7	6
30	Boehmite and Gibbsite Nanoplates for the Synthesis of Advanced Alumina Products. ACS Applied Nano Materials, 2018, 1, 7115-7128.	5.0	79
31	Solar Windâ€Induced Water Cycle on the Moon. Geophysical Research Letters, 2018, 45, 10,959.	4.0	45
32	A Possible Path to Prebiotic Peptides Involving Silica and Hydroxy Acidâ€Mediated Amide Bond Formation. ChemBioChem, 2018, 19, 1913-1917.	2.6	14
33	Interactions on External MOF Surfaces: Desorption of Water and Ethanol from CuBDC Nanosheets. Langmuir, 2017, 33, 10153-10160.	3.5	27
34	Investigating potential sources of Mercury's exospheric Calcium: Photon-stimulated desorption of Calcium Sulfide. Journal of Geophysical Research E: Planets, 2016, 121, 137-146.	3.6	16
35	Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas. Journal of the American Society for Mass Spectrometry, 2016, 27, 1805-1812.	2.8	19
36	Microplasma Ionization of Volatile Organics for Improving Air/Water Monitoring Systems On-Board the International Space Station. Journal of the American Society for Mass Spectrometry, 2016, 27, 1203-1210.	2.8	10

THOMAS M ORLANDO

#	Article	IF	CITATIONS
37	Parameters affecting intracellular delivery of molecules using laser-activated carbon nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1003-1011.	3.3	10
38	Nucleoside phosphorylation by the mineral schreibersite. Scientific Reports, 2015, 5, 17198.	3.3	82
39	Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annual Review of Physical Chemistry, 2015, 66, 379-398.	10.8	347
40	H2O and O(3PJ) photodesorption from amorphous solid water deposited on a lunar mare basalt. Icarus, 2015, 255, 44-50.	2.5	14
41	Temperature programmed desorption studies of water interactions with Apollo lunar samples 12001 and 72501. Icarus, 2015, 255, 24-29.	2.5	53
42	O(3PJ) formation and desorption by 157-nm photoirradiation of amorphous solid water. Journal of Chemical Physics, 2014, 140, 094702.	3.0	6
43	Prebiotic synthesis of triazines from urea: a theoretical study of free radical routes to melamine, ammeline, ammelide and cyanuric acid. RSC Advances, 2014, 4, 32375-32382.	3.6	18
44	The relationship between interfacial bonding and radiation damage in adsorbed DNA. Physical Chemistry Chemical Physics, 2014, 16, 15319-15325.	2.8	19
45	UV Photon-Induced Water Decomposition on Zirconia Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 12789-12795.	3.1	12
46	Radiation Processing of Formamide and Formamide:Water Ices on Silicate Grain Analogue. Journal of Physical Chemistry A, 2014, 118, 1228-1236.	2.5	17
47	Photodissociation of water and O(³ P _J) formation on a lunar impact melt breccia. Journal of Geophysical Research E: Planets, 2014, 119, 894-904.	3.6	11
48	Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies. Space Science Reviews, 2014, 181, 121-214.	8.1	108
49	Mechanisms and cross sections for water desorption from a lunar impact melt breccia. Journal of Geophysical Research E: Planets, 2014, 119, 884-893.	3.6	11
50	Kinetic Energy Dependence of Spin Filtering of Electrons Transmitted through Organized Layers of DNA. Journal of Physical Chemistry C, 2013, 117, 22307-22313.	3.1	21
51	Theoretical Study of the Decomposition of Formamide in the Presence of Water Molecules. Journal of Physical Chemistry A, 2013, 117, 2543-2555.	2.5	41
52	Space-Weathering of Solar System Bodies: A Laboratory Perspective. Chemical Reviews, 2013, 113, 9086-9150.	47.7	130
53	Excimer laser reduction and patterning of graphite oxide. Carbon, 2013, 53, 81-89.	10.3	107
54	Desorption Electrospray Ionization Imaging Mass Spectrometry as a Tool for Investigating Model Prebiotic Reactions on Mineral Surfaces Analytical Chemistry, 2013, 85, 1276-1279.	6.5	19

THOMAS M ORLANDO

#	Article	IF	CITATIONS
55	Mechanisms of H2O desorption from amorphous solid water by 157-nm irradiation: An experimental and theoretical study. Journal of Chemical Physics, 2013, 139, 164702.	3.0	31
56	Water interactions with micronized lunar surrogates JSCâ€1A and albite under ultraâ€high vacuum with application to lunar observations. Journal of Geophysical Research E: Planets, 2013, 118, 105-115.	3.6	34
57	Adsorption of Formamide on Kaolinite Surfaces: A Combined Infrared Experimental and Theoretical Study. Journal of Physical Chemistry C, 2012, 116, 23981-23991.	3.1	36
58	Theoretical Study of Formamide Decomposition Pathways. Journal of Physical Chemistry A, 2011, 115, 841-851.	2.5	82
59	Electron-stimulated desorption of silicates: A potential source for ions in Mercury's space environment. Journal of Geophysical Research, 2011, 116, .	3.3	28
60	Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for electron-stimulated desorption. Planetary and Space Science, 2011, 59, 2026-2036.	1.7	30
61	Intermolecular Coulomb Decay at Weakly Coupled Heterogeneous Interfaces. Physical Review Letters, 2011, 107, 016104.	7.8	34
62	Guanine, Adenine, and Hypoxanthine Production in UVâ€Irradiated Formamide Solutions: Relaxation of the Requirements for Prebiotic Purine Nucleobase Formation. ChemBioChem, 2010, 11, 1240-1243.	2.6	178
63	Signatures of epitaxial graphene grown on Si-terminated 6H-SiC (0001). Surface Science, 2010, 604, 84-88.	1.9	19
64	Low-energy electron-stimulated desorption of cations and neutrals from Si(111)-(7×7):C2D2. Journal of Chemical Physics, 2010, 132, 214704.	3.0	3
65	Formation of Graphene Features from Direct Laser-Induced Reduction of Graphite Oxide. Journal of Physical Chemistry Letters, 2010, 1, 2633-2636.	4.6	211
66	Probing low-energy electron induced DNA damage using single photon ionization mass spectrometry. International Journal of Mass Spectrometry, 2008, 277, 314-320.	1.5	32
67	Roles of Water, Acidity, and Surface Morphology in Surface-Assisted Laser Desorption/Ionization of Amino Acids. Journal of Physical Chemistry C, 2008, 112, 6953-6960.	3.1	41
68	Low-energy electron diffraction and induced damage in hydrated DNA. Journal of Chemical Physics, 2008, 128, 195102.	3.0	62
69	Site-dependent electron-stimulated reactions in water films on TiO2(110). Journal of Chemical Physics, 2007, 127, 224706.	3.0	13
70	Electron-Stimulated Oxidation of Thin Water Films Adsorbed on TiO ₂ (110). Journal of Physical Chemistry C, 2007, 111, 16319-16329.	3.1	44
71	Inelastic electron scattering and energy-selective negative ion reactions in molecular films on silicon surfaces. Applied Surface Science, 2007, 253, 6646-6656.	6.1	10
72	Analysis of Organoselenium and Organic Acid Metabolites by Laser Desorption Single Photon Ionization Mass Spectrometry. Analytical Chemistry, 2006, 78, 8386-8394.	6.5	24

THOMAS M ORLANDO

#	Article	IF	CITATIONS
73	Zone specificity in low energy electron stimulated desorption of Cl+ from reconstructed Si(111)-7×7:Cl surfaces. Surface Science, 2006, 600, L245-L249.	1.9	5
74	The chemical nature of Europa surface material and the relation to a subsurface ocean. Icarus, 2005, 177, 528-533.	2.5	73
75	The importance of pores in the electron stimulated production of D2 and O2 in low temperature ice. Surface Science, 2005, 593, 180-186.	1.9	35
76	Low-energy(5–250eV)electron-stimulated desorption ofH+,H2+, andH+(H2O)nfrom low-temperature water ice surfaces. Physical Review B, 2005, 72, .	3.2	33
77	Role of Water in Electron-Initiated Processes and Radical Chemistry:  Issues and Scientific Advances. Chemical Reviews, 2005, 105, 355-390.	47.7	560
78	Probing Water Interactions and Vacancy Production on Gadolinia-Doped Ceria Surfaces Using Electron Stimulated Desorption. Journal of Physical Chemistry B, 2005, 109, 11257-11262.	2.6	9
79	Stimulated Desorption of Cations from Pristine and Acidic Low-Temperature Water Ice Surfaces. Physical Review Letters, 2004, 92, 187602.	7.8	32
80	The reactions of NO2 and CH3CHO with Na-Y zeolite and the relevance to plasma-activated lean NOx catalysis. Catalysis Today, 2004, 89, 151-157.	4.4	15
81	Electron-Stimulated Desorption of H+, H2+, OH+, and H+(H2O)nfrom Water-Covered Zirconia Surfaces. Journal of Physical Chemistry B, 2003, 107, 9370-9376.	2.6	19
82	Electron-stimulated desorption of D2O coadsorbed with CO2 ice at VUV and EUV energies. Journal of Chemical Physics, 2003, 118, 8898-8904.	3.0	8
83	Brines exposed to Europa surface conditions. Journal of Geophysical Research, 2002, 107, 4-1.	3.3	81
84	Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions. Journal of Geophysical Research, 2001, 106, 3311-3319.	3.3	104
85	Role of Excitons in Electron- and Photon-Stimulated Desorption of Neutrals from Alkali Halides. Physical Review Letters, 2001, 86, 536-539.	7.8	27
86	Low-energy (5–100 eV) electron- and ultraviolet (6.4 eV) photon-stimulated desorption of neutral fragments from NaNO3 single crystals. Applied Surface Science, 1998, 127-129, 1-6.	6.1	10
87	Electron-stimulated desorption of D+from D2O ice: Surface structure and electronic excitations. Physical Review B, 1997, 56, 4925-4937.	3.2	58
88	Photon-stimulated desorption of O(3P) and NO(2Î) fromNaNO3single crystals. Physical Review B, 1997, 55, 13246-13252.	3.2	18
89	Observation of Negative Ion Resonances in Amorphous Ice via Low-Energy (5–40 eV) Electron-Stimulated Production of Molecular Hydrogen. Physical Review Letters, 1996, 77, 3983-3986. -	7.8	84
90	Kinetic and internal energy distributions of molecular hydrogen produced from amorphous ice by impact of 100 eV electrons. Nuclear Instruments & Methods in Physics Research B, 1995, 101, 179-183.	1.4	31

#	Article	IF	CITATIONS
91	Low-Energy (5–120 eV) Electron-Stimulated Dissociation of AmorphousD2O Ice: D(2S), O(3P2,1,0), and O(1D2) Yields and Velocity Distributions. Physical Review Letters, 1995, 75, 2606-2609.	7.8	129
92	Lowâ€energy electronâ€stimulated production of molecular hydrogen from amorphous water ice. Journal of Chemical Physics, 1994, 101, 3282-3286.	3.0	121