Miaogen Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/355524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Warming and thawing in the Mt. Everest region: A review of climate and environmental changes. Earth-Science Reviews, 2022, 225, 103911.	4.0	21
2	Greater temperature sensitivity of vegetation greenup onset date in areas with weaker temperature seasonality across the Northern Hemisphere. Agricultural and Forest Meteorology, 2022, 313, 108759.	1.9	12
3	An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nature Ecology and Evolution, 2022, 6, 397-404.	3.4	78
4	Ecological and societal effects of Central Asian streamflow variation over the past eight centuries. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	21
5	Increasing Interspecific Difference of Alpine Herb Phenology on the Eastern Qinghai-Tibet Plateau. Frontiers in Plant Science, 2022, 13, 844971.	1.7	5
6	Deficiencies of Phenology Models in Simulating Spatial and Temporal Variations in Temperate Spring Leaf Phenology. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	6
7	Detecting crop phenology from vegetation index time-series data by improved shape model fitting in each phenological stage. Remote Sensing of Environment, 2022, 277, 113060.	4.6	20
8	Characteristics of Greening along Altitudinal Gradients on the Qinghai–Tibet Plateau Based on Time-Series Landsat Images. Remote Sensing, 2022, 14, 2408.	1.8	11
9	Investigation of land surface phenology detections in shrublands using multiple scale satellite data. Remote Sensing of Environment, 2021, 252, 112133.	4.6	35
10	Optimal Color Composition Method for Generating High-Quality Daily Photographic Time Series From PhenoCam. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6179-6193.	2.3	4
11	Transformation of China's urbanization and eco-environment dynamics: an insight with location-based population-weighted indicators. Environmental Science and Pollution Research, 2021, 28, 16558-16567.	2.7	7
12	Local Climatic Factors Mediated Impacts of Large-Scale Climate Oscillations on the Growth of Vegetation Across the Tibetan Plateau. Frontiers in Environmental Science, 2021, 9, .	1.5	6
13	Phylogenetic conservatism in heat requirement of leaf-out phenology, rather than temperature sensitivity, in Tibetan Plateau. Agricultural and Forest Meteorology, 2021, 304-305, 108413.	1.9	8
14	Warmingâ€induced shrubline advance stalled by moisture limitation on the Tibetan Plateau. Ecography, 2021, 44, 1631-1641.	2.1	32
15	No benefits from warming even for subnival vegetation in the central Himalayas. Science Bulletin, 2021, 66, 1825-1829.	4.3	20
16	The superiority of the normalized difference phenology index (NDPI) for estimating grassland aboveground fresh biomass. Remote Sensing of Environment, 2021, 264, 112578.	4.6	43
17	Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180, 29-44.	4.9	21
18	Inconsistent changes in NPP and LAI determined from the parabolic LAI versus NPP relationship. Ecological Indicators, 2021, 131, 108134.	2.6	24

#	Article	IF	CITATIONS
19	Limited increase in asynchrony between the onset of spring green-up and the arrival of a long-distance migratory bird. Science of the Total Environment, 2021, 795, 148823.	3.9	4
20	The majority of tree growth on the monsoonal Tibetan Plateau has benefited from recent summer warming. Catena, 2021, 207, 105649.	2.2	3
21	Precipitation dominants synergies and trade-offs among ecosystem services across the Qinghai-Tibet Plateau. Global Ecology and Conservation, 2021, 32, e01886.	1.0	25
22	Coarse-Resolution Satellite Images Overestimate Urbanization Effects on Vegetation Spring Phenology. Remote Sensing, 2020, 12, 117.	1.8	32
23	Thick cloud removal in Landsat images based on autoregression of Landsat time-series data. Remote Sensing of Environment, 2020, 249, 112001.	4.6	44
24	Contrasting Effects of Temperature and Precipitation on Vegetation Greenness along Elevation Gradients of the Tibetan Plateau. Remote Sensing, 2020, 12, 2751.	1.8	29
25	The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environmental Research Letters, 2020, 15, 084037.	2.2	62
26	Does any phenological event defined by remote sensing deserve particular attention? An examination of spring phenology of winter wheat in Northern China. Ecological Indicators, 2020, 116, 106456.	2.6	23
27	Can changes in autumn phenology facilitate earlier green-up date of northern vegetation?. Agricultural and Forest Meteorology, 2020, 291, 108077.	1.9	36
28	Warming-induced unprecedented high-elevation forest growth over the monsoonal Tibetan Plateau. Environmental Research Letters, 2020, 15, 054011.	2.2	23
29	A New Cross-Fusion Method to Automatically Determine the Optimal Input Image Pairs for NDVI Spatiotemporal Data Fusion. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 5179-5194.	2.7	29
30	Effect of preseason diurnal temperature range on the start of vegetation growing season in the Northern Hemisphere. Ecological Indicators, 2020, 112, 106161.	2.6	28
31	Uncertainty of Vegetation Green-Up Date Estimated from Vegetation Indices Due to Snowmelt at Northern Middle and High Latitudes. Remote Sensing, 2020, 12, 190.	1.8	14
32	Estimating daily average surface air temperature using satellite land surface temperature and top-of-atmosphere radiation products over the Tibetan Plateau. Remote Sensing of Environment, 2019, 234, 111462.	4.6	66
33	Impact of urban greenspace spatial pattern on land surface temperature: a case study in Beijing metropolitan area, China. Landscape Ecology, 2019, 34, 2949-2961.	1.9	30
34	How Does Scale Effect Influence Spring Vegetation Phenology Estimated from Satellite-Derived Vegetation Indexes?. Remote Sensing, 2019, 11, 2137.	1.8	25
35	Spatial sampling inconsistency leads to differences in phenological sensitivity to warming between natural and experiment sites. Science Bulletin, 2019, 64, 961-963.	4.3	3
36	A semi-analytical snow-free vegetation index for improving estimation of plant phenology in tundra and grassland ecosystems. Remote Sensing of Environment, 2019, 228, 31-44.	4.6	32

#	Article	IF	CITATIONS
37	Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 2019, 25, 1922-1940.	4.2	944
38	Summer Temperature over the Tibetan Plateau Modulated by Atlantic Multidecadal Variability. Journal of Climate, 2019, 32, 4055-4067.	1.2	22
39	Growth response of alpine treeline forests to a warmer and drier climate on the southeastern Tibetan Plateau. Agricultural and Forest Meteorology, 2019, 264, 73-79.	1.9	42
40	Improved Land Use and Leaf Area Index Enhances WRF-3DVAR Satellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulation in the Shule River Basin during July 2013. Advances in Atmospheric Sciences, 2018, 35, 628-644.	1.9	6
41	Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation. Agricultural and Forest Meteorology, 2018, 249, 176-186.	1.9	50
42	Contrasting responses of grassland water and carbon exchanges to climate change between Tibetan Plateau and Inner Mongolia. Agricultural and Forest Meteorology, 2018, 249, 163-175.	1.9	62
43	The mixed pixel effect in land surface phenology: A simulation study. Remote Sensing of Environment, 2018, 211, 338-344.	4.6	89
44	Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Change Biology, 2018, 24, 184-196.	4.2	177
45	Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nature Climate Change, 2018, 8, 1092-1096.	8.1	145
46	Mismatch in elevational shifts between satellite observed vegetation greenness and temperature isolines during 2000–2016 on the Tibetan Plateau. Global Change Biology, 2018, 24, 5411-5425.	4.2	60
47	A Novel Cloud Removal Method Based on IHOT and the Cloud Trajectories for Landsat Imagery. Remote Sensing, 2018, 10, 1040.	1.8	9
48	A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sensing of Environment, 2018, 217, 244-257.	4.6	172
49	Mapping the Distribution and Abundance of Flowering Plants Using Hyperspectral Sensing. , 2018, , 69-78.		2
50	Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. International Journal of Biometeorology, 2017, 61, 1433-1444.	1.3	99
51	Little change in heat requirement for vegetation green-up on the Tibetan Plateau over the warming period of 1998–2012. Agricultural and Forest Meteorology, 2017, 232, 650-658.	1.9	47
52	Asymmetric Responses of the End of Growing Season to Daily Maximum and Minimum Temperatures on the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,278.	1.2	45
53	Grassland restoration reduces water yield in the headstream region of Yangtze River. Scientific Reports, 2017, 7, 2162.	1.6	39
54	Prediction of future malaria hotspots under climate change in sub-Saharan Africa. Climatic Change, 2017, 143, 415-428.	1.7	20

#	Article	IF	CITATIONS
55	Strong impacts of daily minimum temperature on the greenâ€up date and summer greenness of the Tibetan Plateau. Global Change Biology, 2016, 22, 3057-3066.	4.2	223
56	Emerging opportunities and challenges in phenology: a review. Ecosphere, 2016, 7, e01436.	1.0	225
57	A Simple Method for Detecting Phenological Change From Time Series of Vegetation Index. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 3436-3449.	2.7	29
58	Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982-2008. International Journal of Climatology, 2015, 35, 3707-3712.	1.5	44
59	Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Global Change Biology, 2015, 21, 652-665.	4.2	173
60	Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9299-9304.	3.3	404
61	Precipitation impacts on vegetation spring phenology on the <scp>T</scp> ibetan <scp>P</scp> lateau. Global Change Biology, 2015, 21, 3647-3656.	4.2	377
62	Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015, 6, 6911.	5.8	384
63	Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2015, 2, 454-467.	4.6	161
64	An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data. Agricultural and Forest Meteorology, 2015, 200, 9-20.	1.9	106
65	Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 2015, 60, 3048-3056.	0.4	66
66	Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere. PLoS ONE, 2014, 9, e88178.	1.1	98
67	Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology, 2014, 95, 3387-3398.	1.5	67
68	Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology, 2014, 189-190, 71-80.	1.9	323
69	Can EVI-derived land-surface phenology be used as a surrogate for phenology of canopy photosynthesis?. International Journal of Remote Sensing, 2014, 35, 1162-1174.	1.3	52
70	A simple method to simulate diurnal courses of PAR absorbed by grassy canopy. Ecological Indicators, 2014, 46, 129-137.	2.6	9
71	Spatial variations in snow cover and seasonally frozen ground over northern China and Mongolia, 1988–2010. Global and Planetary Change, 2014, 116, 139-148. 	1.6	24
72	Earlier vegetation green-up has reduced spring dust storms. Scientific Reports, 2014, 4, 6749.	1.6	56

#	Article	IF	CITATIONS
73	No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2329.	3.3	103
74	Specification of thermal growing season in temperate China from 1960 to 2009. Climatic Change, 2012, 114, 783-798.	1.7	38
75	Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2011, 151, 1711-1722.	1.9	345
76	Spring phenology was not consistently related to winter warming on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E91-2; author reply E95.	3.3	74
77	Practical image fusion method based on spectral mixture analysis. Science China Information Sciences, 2010, 53, 1277-1286.	2.7	6
78	Do flowers affect biomass estimate accuracy from NDVI and EVI?. International Journal of Remote Sensing, 2010, 31, 2139-2149.	1.3	43
79	NEW ALGORITHM FOR SPECTRAL MIXTURE ANALYSIS BASED ON FISHER DISCRIMINANT ANALYSIS: EVIDENCE FROM LABORATORY EXPERIMENT. Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2010, 28, 476-480.	0.2	0
80	Diurnal and seasonal variations in light-use efficiency in an alpine meadow ecosystem: causes and implications for remote sensing. Journal of Plant Ecology, 2009, 2, 173-185.	1.2	28
81	Yellow flowers can decrease NDVI and EVI values: evidence from a field experiment in an alpine meadow. Canadian Journal of Remote Sensing, 2009, 35, 99-106.	1.1	44
82	Indicator of flower status derived from in situ hyperspectral measurement in an alpine meadow on the Tibetan Plateau. Ecological Indicators, 2009, 9, 818-823.	2.6	38
83	Estimating aboveground biomass of grassland having a high canopy cover: an exploratory analysis of <i>in situ</i> hyperspectral data. International Journal of Remote Sensing, 2009, 30, 6497-6517.	1.3	106
84	Estimation of aboveground biomass using in situ hyperspectral measurements in five major grassland ecosystems on the Tibetan Plateau. Journal of Plant Ecology, 2008, 1, 247-257.	1.2	78
85	Land-use/land-cover change detection using change-vector analysis in posterior probability space. , 2008, , .		0
86	Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. Journal of Plant Ecology, 0, , rtw084.	1.2	33